Controlled residential ventilation

Helios: The systems provider in controlled residential ventilation.

Traditional residential ventilation by opening the windows is not a valid solution these days. Studies have shown that ventilation is only insufficient and uncontrolled in 80% of cases. This destroys the energy savings strived for by the extensive insulating measures. Efficiency, sealed building shells and the ventilation concept for damp and moisture protection require increasingly mechanised, controlled ventilation.

Odours from the kitchen, bathroom and WC as well as harmful substances from cleaning agents, furniture, etc. have to be led away for a comfortable, healthy indoor atmosphere. The moisture caused by cooking, drying and showering – an average of 10-15 litres of water per day in a 4-person household – has to be run outside in order to prevent mould, stains and damp walls.

Helios has optimal systems for all areas of application, be it with or without heat recovery, for a new build or renovation, multi-storey building or detached house, as a centralised or decentralised solution. Tailored and coordinated accessories round off the corresponding ventilation devices. The requirements of the Energy Saving Ordinance (EnEV) are met in full and fire and noise safety concerns are covered.
Controlled residential ventilation systems at a glance.

MULTI-STOREY CONSTRUCTION

- **MONO TUBE VENTILATION SYSTEM ELS**
 - with individual devices according to DIN 18017-3
- **CENTRAL VENTILATION SYSTEM ZLS**
 - with energy-saving EC roof fan according to DIN 18017-3

SINGLE FAMILY HOUSES APARTMENTS

- **CENTRAL VENTILATION BOX ZEB**
- **KWL® VENTILATION SYSTEMS**
 - with heat recovery
- **KWL® PERIPHERY**
 - HygroBox
 - Ground heat exchanger
 - Air distribution systems
 - Air inlets and outlets
 - Wall / roof outlets, etc.

PLANNING INFORMATION

- DIN 1946-6
- DIN 18017-3

44 on

46 on

65 on

70 on

76 on

114 on
Ventilation concept (LK) according to DIN 4146-6

The requirements of the Energy Saving Ordinance (EnEV 2016) for residential buildings prescribe that a minimum user-independent circulation of air in the residential unit must be guaranteed for quality assurance and building protection. For this reason, a ventilation concept is to be created according to DIN 4146-6 for every new build and all energy-oriented refurbishments. The ventilation concept answers the planning issue of whether a residential building is sufficiently ventilated by natural infiltration (building leaks) or whether user-independent ventilation measures are required.

Method:
1. Calculating the air flow volume for moisture protection according to DIN 4146–6; 05/2009

\[q_{v,\text{Inf,wirk}} = \left(0.001 \times A_{\text{rg}} + 1.15 \times A_{\text{r}} + 20 \right) \]

\[q_{v,\text{Inf,FL}} = \text{air flow vol. for moisture prot. m}^3/\text{h} \]

\[NNE = \text{Surface area of the residential unit in m}^2 \]

\[I_S = \text{Factor to consider the building’s heat insulation.} \]

- 0.3 for high insulation (building with insulation according to the German Heat Conservation Ordinance (WStHg) 95 or better).
- 0.4 for low insulation (building with insulation worse than WStHg 95).

2. Calculating the air flow volume by infiltration according to DIN 4146–6; 05/2009

\[q_{v,\text{Inf,wirk}} = \text{effective air flow vol. by infiltration m}^3/\text{h} \]

\[A_{\text{rg},\text{Komp}} = \text{Correction factor for deductible system-independent and component-independent infiltration according to DIN 4146-6 Tab. 6, exact calculation according to the calc. method outlined in DIN 4146-6 Annex I. Standard val. 0.5 (taken as a basis to simplify the determination of ventilation tech. measures within the ventilation concept for free ventilation in the form of cross ventilation).} \]

\[A_{\text{rg}} = \text{Surface area of the residential unit in m}^2 \]

\[H_r = \text{Room height in m} \]

\[n_0 = \text{According to DIN 4146-6 specifications or measured values. See table 1.} \]

\[A_{\text{rg},\text{Komp}} = \text{Correction factor for the effective proportion of air from infiltration as a factor of the building location. Standard val. 1.0, exact calculation according to the method outlined in DIN 4146-6 Annex I.} \]

\[A_{\text{rg},\text{Komp}} = \text{Correction factor for the effective proportion of air from infiltration as a factor of the building location. Standard val. 1.0, exact calculation according to the method outlined in DIN 4146-6 Annex I.} \]

\[A_{\text{rg},\text{Komp}} = \text{Correction factor for the effective proportion of air from infiltration as a factor of the building location. Standard val. 1.0, exact calculation according to the method outlined in DIN 4146-6 Annex I.} \]

\[A_{\text{rg},\text{Komp}} = \text{Correction factor for the effective proportion of air from infiltration as a factor of the building location. Standard val. 1.0, exact calculation according to the method outlined in DIN 4146-6 Annex I.} \]

\[A_{\text{rg},\text{Komp}} = \text{Correction factor for the effective proportion of air from infiltration as a factor of the building location. Standard val. 1.0, exact calculation according to the method outlined in DIN 4146-6 Annex I.} \]

\[A_{\text{rg},\text{Komp}} = \text{Correction factor for the effective proportion of air from infiltration as a factor of the building location. Standard val. 1.0, exact calculation according to the method outlined in DIN 4146-6 Annex I.} \]

\[A_{\text{rg},\text{Komp}} = \text{Correction factor for the effective proportion of air from infiltration as a factor of the building location. Standard val. 1.0, exact calculation according to the method outlined in DIN 4146-6 Annex I.} \]

\[A_{\text{rg},\text{Komp}} = \text{Correction factor for the effective proportion of air from infiltration as a factor of the building location. Standard val. 1.0, exact calculation according to the method outlined in DIN 4146-6 Annex I.} \]

3. Air flow volume balancing

Following the calculation of both air flow volumes \(q_{v,\text{Inf,wirk}} \) and \(q_{v,\text{Inf,FL}} \), the two values are compared. If the air flow volume from infiltration is less than the air flow volume for moisture protection, ventilation technology is required. The selected ventilation technology (e.g. Helios DV EC, ultraSilence® ELS, KWKL®) must permanently transport the air flow volumes for moisture protection and must be user-independent (24 hours a day / 365 days a year).

For the further design of a residential ventilation system, it is not only the air flow volume for moisture protection that is relevant, but also the air flow volume needed to fulfill and maintain the minimum hygienic requirements, which must also largely be ensured independently of the users.

Forms of ventilation / operating modes according to DIN 4146–6

Ventilation for noise protection (FL)

Ventilation required to ensure the protection of the building (against moisture) under normal conditions of use with reduced moisture loads in some cases. For example: Normal conditions of use with reduced moisture loads in some cases include, for example, temporary absence of the users and no drying of washing in the residential unit.

Operating modes:
- Continuous (24 h / 365 d); user-independent
- Reduced ventilation (RL)
 Ventilation necessary to ensure the min. hygienic requirements and for the protection of the building (against moisture) under normal conditions of use with reduced moisture loads and sublot, conc. in some cases. For example: As a result of the temporary absence of users.

Operating modes:
- Continuous (24 h / 365 d); user-independent
- Nominal ventilation (NL)
 Ventilation necessary to ensure the min. hygienic requirements and for the protection of the building when the users are present (normal operation).

Operating mode:
- Primarily when users are present; time limited for energy-related reasons; ensured by suitable ventilation technology with temporary support from free ventilation (window ventilation).

Intensive ventilation (IL)

Temporarily required ventilation with increased air flow volume of air to decompose load peaks (load operation).

Operating mode:
- Primarily when users are present; time limited for energy-related reasons; ensured by suitable ventilation technology with temporary support from free ventilation (window ventilation).

Framework conditions

The noise levels stated in DIN 4109 can technically be achieved if targeted boundary conditions are observed, such as:
- Manhole arrangement during floor planning
- Design of the installation walls and/or manholes in 220 kg/m³
- Isolation from the main structure
- Determining the noise protection requirements
- Inclusion of an acoustics technician from noise protection level (SS) III according to VDI 4100
- Contractual safeguarding and determination of the standard principles

Recommendation:
In the case of buildings under private law, it must be defined in advance whether the building is designed according to DIN 4109 or VDI 4100.

Note
In the case of buildings under private law, it must be defined in advance whether the building is designed according to DIN 4109 or VDI 4100.

Table 1: Standards of value for air exchange according to DIN 4146–6

<table>
<thead>
<tr>
<th>House type</th>
<th>Standard</th>
<th>Ventilation system</th>
<th>(n_0) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-storey unit (EFH)</td>
<td>New build</td>
<td>Fan-supported ventilation</td>
<td>1.0</td>
</tr>
<tr>
<td>Single-storey unit (EFH)</td>
<td>Renovation</td>
<td>Fan-supported ventilation</td>
<td>1.0</td>
</tr>
<tr>
<td>Multi-storey unit (MFH)</td>
<td>New build</td>
<td>Fan-supported ventilation</td>
<td>1.0</td>
</tr>
<tr>
<td>Multi-storey unit (MFH)</td>
<td>Renovation</td>
<td>Fan-supported ventilation</td>
<td>1.0</td>
</tr>
<tr>
<td>Multi-storey unit (MFH)</td>
<td>New build</td>
<td>Free ventilation</td>
<td>1.5</td>
</tr>
<tr>
<td>Multi-storey unit (MFH)</td>
<td>Renovation</td>
<td>Free ventilation</td>
<td>1.5</td>
</tr>
</tbody>
</table>

(FEH) = Single family house / (MFH) = Apartment building

Table 2: Noise limits (DIN 4109–1)

<table>
<thead>
<tr>
<th>Sound source</th>
<th>Type of room requiring protection</th>
<th>Sound pressure level dB (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water installations (both water supply and wastewater systems)</td>
<td>Living rooms, bedrooms</td>
<td>(L_{1/3, \text{max}} \leq 30^a)</td>
</tr>
<tr>
<td>Other building service installations</td>
<td>Classrooms, workspaces</td>
<td>(L_{1/3, \text{max}} \leq 35^a)</td>
</tr>
<tr>
<td>Operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>day</td>
<td>6 to 22 hrs</td>
<td>(L_{1/3, \text{max}} \leq 35^b)</td>
</tr>
<tr>
<td>night</td>
<td>22 to 6 hrs</td>
<td>(L_{1/3, \text{max}} \leq 35^b)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sound source</th>
<th>Type of room requiring protection</th>
<th>Sound pressure level dB (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water installations (both water supply and wastewater systems)</td>
<td>Living rooms, bedrooms</td>
<td>(L_{1/3, \text{max}} \leq 30^a)</td>
</tr>
<tr>
<td>Other building service installations</td>
<td>Classrooms, workspaces</td>
<td>(L_{1/3, \text{max}} \leq 35^a)</td>
</tr>
<tr>
<td>Operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>day</td>
<td>6 to 22 hrs</td>
<td>(L_{1/3, \text{max}} \leq 35^b)</td>
</tr>
<tr>
<td>night</td>
<td>22 to 6 hrs</td>
<td>(L_{1/3, \text{max}} \leq 35^b)</td>
</tr>
</tbody>
</table>

\(a \) Individual short-term peaks when operating the fittings and devices according to Annex B, Table B.1 (Open, close, adjust, interrupt) should be disregarded.
\(b \) With regard to ventilation systems, values which are 5 dB(A) higher are permitted, provided this concerns continuous sounds without any individual tones.

\(^a \) Unless higher level due to increased intrinsic noise generation is acceptable.
DIN 18017-3 (white paper central ventilation systems with exhaust air can be carried away in the case of a renovated property: Integration of at least two-level systems in residential buildings. The requirements for exhaust air systems include the creation of a ventilation concept including the ventilation of individual rooms. This is in contrast to the ventilation of apartments in general and therefore considers the entire unit. When planning and implementing the exhaust air systems, the first thing to do is decide whether it relates to a residential or non-residential building.

Process for residential buildings

Be it a detached house or apartment building, a new build or renovated property, the start of the approach to ventilation technology is the ventilation concept called for by DIN 1946-6. The user-dependent, permanent guarantee of ventilation for damp and moisture protection has specific impacts on the concept design of the exhaust air system.

- The requirements for exhaust air flow volume in accordance with DIN 18017-3 make a distinction based on the question of whether the ventilation system is to be permanent (40 m³/h) or demand-based (60 m³/h). In the case of demand-based systems, the air flow volume may be reduced to 0 in times of low demand for air. Continuous ventilation to protect against moisture, as prescribed in DIN 1946-6, is not stipulated. This means that in two-level ventilation devices are used in exhaust air systems in residential buildings. The basic level (30 m³/h) is connected to the continuous current and cannot be turned off by the user. This therefore sufficiently satisfies the demand for the fan to provide damp and moisture protection. The higher level (60 m³/h or 100 m³/h) is activated according to demand. It is activated when switched on by the user or through moisture/presence control.

- In order to ensure the suitability of an exhaust air system for function also in the case of modern and therefore sealed building shells, the planning and construction of are outdoor air vents are indispensable. The air flow volume of the exhaust air is to be offset by an equal air flow volume of incoming air through the building shell through suitable outdoor air vents. The ventilation through the building shell previously calculated in the ventilation concept is deducted when determining the dimensions of the ALD.

- In the case of a renovated property, it should be clear to all those involved in the project that the presence of a exhaust air ventilation system in accordance with DIN 18017-3 does not relieve them from their obligation to create and adhere to a ventilation concept according to DIN 1946-6. The air flow volume for dampp and moisture protection must in principle be guaranteed. In addition, it is necessary that an air flow volume of incoming flow equal to the total of the air flow volume of exhaust air is continuously passed through the building shell. If the total exhaust air flow volume is smaller than the air flow volume required for damp and moisture protection, the exhaust air ventilation system is to be adjusted at least to the damp and moisture protection air flow volume.

Planning guidelines for exhaust systems

- Building a new residential property: Creation of a ventilation concept in accordance with DIN 1946-6
- Design of the controlled ventilation and air extraction in accordance with DIN 1946-6
- Integration of at least two-level individual room fans to ensure ventilation for dampp and moisture protection and the air flow volumes required under DIN 18017. Ensuring the supply of further incoming air by selecting suitable outside air vents.

Renovation of a residential property:

- Creation of a ventilation concept in accordance with DIN 1946-6
- Comparison of the exhaust air flow volumes present on-site with the minimum air flow volume for moisture protection
- Setting up suitable outdoor air vents, where necessary
- Substitution of the existing single-phase individual room fans by multi-level appliances.

Process for non-residential buildings

DIN 18017-3 continues to apply beyond its normal scope for the ventilation of interior WCs and other exhaust air rooms in non-residential buildings. In contrast to residential buildings, there are no normative obligations of any kind to ensure ventilation for damp and moisture protection in non-residential buildings. The need for ventilation technology in WCs in particular is governed by the Workplace Ordinance and other construction law guidelines. The requirements of the standard can be adopted unchanged for ventilation systems in non-residential buildings planned and built in accordance with DIN 18017-3.

Types of system

- The individual exhaust air ventilation systems are further divided into systems with their own exhaust air duct and systems with a shared exhaust air duct. Due to the numerous benefits (e.g. space-saving by having just one duct), systems with shared exhaust air duct are given preference in practice.

- The central ventilation systems are also divided into two subcategories: Central ventilation systems with air flow volumes that can only be changed jointly and central ventilation systems with air flow volumes that can be changed in each apartment (e.g. DV EC in combination with AE exhaust elements).

- Pure ventilation of individual rooms is within the scope of DIN 18017-3. If there are no requirements on the ventilation technology of any kind in the type plan within the meaning of DIN 1946-6, the following planned air flow volumes shall apply: 40 m³/h in central ventilation systems.

- This air flow volume is to be discharged permanently.
- However, the exhaust air flow volume must not be reduced by more than half for more than 12 hours a day in times of low demand for air, particularly at night. 60 m³/h for decentralised exhaust air systems.

- This air flow volume of exhaust air is to be led away during use in the case of demand-based systems.
- The ventilation appliance may be reduced to 0 in times of low demand for air if the building complies with a thermal insulation standard under the 1995 Heat Insulation Ordinance or better.
- The same air flow volumes apply for kitchens.
- In the case of pure WC rooms, these air flow volumes can be halved.

Instructions for project planning

The primary exhaust air duct should be straight and vertical and must have an even cross-section, otherwise mathematical proof in accordance with DIN 18017-3 is required. The primary exhaust air duct is to be equipped with heat insulation in order to prevent the formation of condensation. Alternatively, condensation drains may be installed.

- Exhaust air can be carried away from bathrooms and WCs by a fan. To that end, a double direction is required.

- Exhaust air can be carried away from bathrooms and kitchens via separate fans. The connection of extractor hoods to DIN 18017-3 systems is not permitted. To that end, built-in lines must be planned.

- The exhaust lines are to be permanently sealed and must have a stable design. A sufficient number of suitable cleaning openings are to be provided. Screw-in openings for cleaning are not permitted.

Project planning characteristics for central ventilation systems

- For central ventilation systems with an air flow volume that can only be changed for all apartments, only exhaust valves with the same characteristic curve can be used. It must not be possible to adjust the valves after adjustment. Systems of this kind are to be operated permanently. Air flow volume reductions in times of low demand for air are to be triggered automatically (e.g. using a timer).

- Central ventilation systems with air flow volumes that can be changed for individual apartments are equipped with exhaust elements with variable characteristic curves. The exhaust valves are activated by the user in the apartment or controlled automatically by room air sensors. The air flow volume is then only adjusted according to demand in the respective apartment. Air flow volume stabilizers built into the exhaust elements mean that other apartments remain unaffected by the change. The capacity of the fan adjusts automatically to the total air flow volume to be conveyed.

Fire safety

The functionality of exhaust air systems in accordance with DIN 18017-3 is governed in the official ventilation system guidelines (MLüAR), section 7 “Specific conditions for ventilation systems in accordance with DIN 18017-3”. All products licensed for this are marked with the label 18017-3 under building law and may only be used in such systems. Use of these fire safety products in core types of systems (e.g. ventilation systems in residential spaces with heat recovery) is not permitted.
Ventilation of sanitary rooms and apartment kitchens in accordance with DIN 18017-3.

The mono tube ventilation system ultraSilence® ELS from Helios has impressive benefits for the ventilation of interior bathrooms and WCs in residential units, hotels and other buildings prescribed by DIN 18017-3.

- **Space-saving:** A central riser duct spanning more than 20 storeys with the smallest possible cross-section saves money and creates usable living space.
- **Cost-effective:** Low material use and quick and easy installation result in manageable costs and time required.
- **Energy-saving:** The ultraSilence® ELS devices reduce the need for ventilation heat and therefore contribute to energy-savings when it comes to heat.
- **Simple planning:** Evidence of DIBt approval renders all further measurements in the construction sign-off superfluous to requirements, providing extra certainty and saving trouble. The effort for planning, rising duct dimensioning, tendering and specifications is reduced to a minimum.
- **Software-assisted:** The entire planning is done at the click of a button with Helios ELS software. Lists of materials and offers are completed in just a few steps. Simply download it from www.heliosventilatoren.de.
The beautifully quiet ELS devices are turned on according to demand and guide used air out of the kitchen, bathroom and toilet via a central main line, which may be connected to more than 20 storeys or over 40 individual devices.

External air vents quietly feed outdoor air without dust into bedrooms and living rooms. Helios offers elements that can be built into walls and windows, manually controlled or temperature-regulated, with automatic air flow volume adjustment and sound insulation.

When planning and designing ventilation systems, the state fire safety requirements must be observed. A number of different solutions are available to choose from, depending on the structural circumstances.
Mono tube ventilation system ELS

Highlights

Barrier-free and automatic. ELS-VP with PIR sensor for automatic ventilation as required when entering the room. Optimum fan control ideal for toilets and sanitary facilities of hotels, offices, hostels, etc. More on page 53.

Revolutionary and intelligent: ELS-VF types with automatic humidity control for optimal energy saving and a comfortable room climate without mould. More on page 53.

Unique: Filter change display indicates when filter needs cleaning. Permanent, long life, washable filter with large cross section area. Saves the purchase of expensive disposable filters.

Flexibility without limits: Casing types ELS-GU and -GUBA for one/two room ventilation with connection left, right, to the bottom or for toilet adaptation. Discharge spigot to the top, rotatable to the left, right or to the back.

Mono tube ventilation system ELS

Highlights

Intelligent electronic system for wide variety of operating modes like interval function, overrun timer, humidity controlled operation, automatic PIR sensor etc. Circuit board with pins for electrical connection placed in splash proof casing.

Efficient energy-saving motor. Acoustically tested, long life ball bearings are greased for life (approx. 40,000 hours running). Maintenance free, totally enclosed in an aluminium diecast casing.

Clever: Airtight back draught shutter in the discharge spigot, can be turned by 90°. Permits casing positioning with discharge to the left, right, to the top or to the back.

Optimal solution for every demand. More than 20 different ELS fan units can be assembled in the standard surface or flush mounted casing without using tools.
Above all in apartment construction, the ventilation must be virtually silent. This is fully achieved with the single ventilation units ultraSilence® ELS. With 26 dB(A)* for ventilation on the standard ventilation stage (V=35 m³/h) and 35 dB(A)* for V=60 m³/h and Aₐ = 10 m², ultraSilence® ELS unbeatably quiet.

The sound levels correspond to DIN 18017-3 as follows and are guaranteed by Helios:
- sound power level, A-rated (Lₖₐ) in dB(A) or
- sound pressure level, A-rated (Lₖₙ) in dB(A) in relation to an absorption surface Aₐ = 4 m². In relation to Aₐ = 10 m², so the sound levels are 4 dB(A) lower.

The sound power level Lₖₐ shows the real emitted sound power, independent from the distance and room conditions, and is the sound at source.

The sound pressure level Lₖₙ is caused by the source and received by the ear. Depending on absorption, i.e. absorption capacity of the room, the perceived sound varies and is difficult to trace.

All ELS fan units have permanent filters as standard. This ensures trouble free quiet installation. They prevent the fan and sound insulation from becoming clogged, resulting in satisfied tenants, landlords and owners.

The filter change display (red dot) indicates when the filter needs cleaning which prevents a drop in performance. Very practical!

User friendly – the retractable facia with hinge.
For filter removal flip up facia by hand. To close simply let it retract.

Unique – the permanent filter.
Large filter cross-section area, with high dirt holding capacity for long cleaning intervals. To clean the filter, simply put it in the dishwasher: This eliminates the regular purchase of expensive disposable filters.

Perfectly designed and multiple award-winning.
ultraSilence® ELS fits everywhere: The facia complements every tile, wallpaper or marble- and thus satisfies the highest demands of designers.

The minimalist-designed ultra flat facia with classy look covers the fan unit. The air flows in on all sides so that dirt deposits are prevented.

The ultra flat premium design of the facade impresses in every room design with unobtrusive elegance. The extremely slimline flush mounted casing has an installation depth of just 89 mm. That way it integrates completely – also in small rooms, on walls or ceilings. The ideal solution, also in narrow installation shafts.
The ultraSilence® ELS units have the approval of the Institute for Bautechnik, Berlin. In addition there are international certificates and conformities with the relevant standards and regulations. There are also the following certificates:

- TÜV approved performance.
- Certificate of the Institute for Acoustics and Building Physics (IAB), Oberursel, for noise transmission regulations in buildings (DIN 4109).
- TÜV approved leakage rate of backdraught shutter.
- External inspection of production by TÜV Bayern-Sachsen.
- Fire protection tests of backdraught shutter and casing with fire protection, carried out by the Institute for Material Testing of the Institute for Baustoffe, Massivbau and Brandschutz (IBMB), Braunschweig, swiss fire protection code Z 5491.

So very simple – the electric plug connection.
For trouble-free connection, removable from its fixture. Cable entry and connector connecting takes place with casing assembly. Insertion of fan unit and facia on final fix.

Clever. The airtight back draught shutter, which is integrated in the discharge spigot, can be turned by 90°. This makes a positioning of the casing with discharge to the left, right, top or back possible.

Unlimited possibilities. ELS-GU and -GUBA are the universal casings for one or two room ventilation with connection to the left, right or bottom as well as toilet seat adaptation via flushing pipe. The discharge spigot can be positioned to the top, left, right or to the back. Everything with the same casing!

The ultraSilence® ELS units are available in approx. 100 variants and 3 airflows for ventilation of kitchen, bathroom and toilet in the apartment sector. User-friendly controls with overrun timer and interval timer function, automatic motion sensor or humidity controlled operation (in standard and demand-based ventilation) for barrier-free automatic operations are optional units.

60 m³/h airflow volume at 260 Pa. This pressure capacity puts Helios ELS at the forefront of high-performance fans. This permits the smallest pipe cross sections for the main riser, reduces investment costs and increases the usable living space.

Note
Further information about ELS types for barrier-free automatic operation
– with humidity control
– or PIR detector

see page 53
The Energy Saving Ordinance (EnEV 2016) demands the implementation of the low-energy house standard. The altered construction method and the resulting tight building shell place particular significance on the ventilation heat.

According to the previous design, the ventilation technology is responsible for just 25% of the total energy consumption for heating. Given the sealed thermal building shell, these days this proportion is at least 50% in a modern residential building. Building planning in accordance with EnEV 2016 requires a comparison of a planned residential building with a reference building. A demand-based exhaust air system is standard for a reference residential building in accordance with EnEV 2016.

Controlled apartment ventilation using a demand-based exhaust air system has reduced the minimum air exchange for window ventilation from 0.7 h⁻¹ or 0.6 h⁻¹ (with / without leak test) to 0.4 h⁻¹.

The use of Helios VF-AL systems technology can drop the creditable air exchange to as low as 0.35 h⁻¹. This reduction of the minimum air exchange generally lowers primary energy consumption by around 10%. Therefore the requirements for satisfying the KfW requirements (KfW efficient buildings) are significantly easier to fulfill.

Helios VF-AL systems technology with moisture-based ventilation control is an optimal solution for the current standard, including in when it comes to pricing. It is coordinated over the entire apartment and works according to the principle of vacuum air ventilation. Exhaust air is taken from the rooms with contaminated air (bathroom, WC, kitchen). Fresh outside air flows through pressure-controlled incoming outside air elements into living rooms and bedrooms.

The optimal operation

Energy-efficiency and demand-optimised control functions are integrated in ELS appliances. Sophisticated technology enables demand-optimised and efficient ventilation according to the property-specific and room-specific tasks.

Barrier-free automatic operation controlled by built-in presence sensors or moisture-controlled function. See adjacent and the right-hand side.

What is optimal and when?

Demand-based ventilation with overrun
Typical use: Ventilation of indoor bathrooms and WCs (overrun prescribed by DIN 18017) with normal frequency of use, e.g. in residential areas.
Applicable devices: Types ELS-VN, ELS-VNC or standard devices with separate overrun switches.
Control: Manual, possibly parallel with light.

Demand-based ventilation without overrun
Typical use: Ventilation of kitchens and rooms with windows. High frequency of use in apartment buildings, hotels, retirement homes and many more.
Applicable devices: All standard ELS-V types
Control: Manual, via conventional installation switches or automatically using a timer.

Demand-based ventilation with overrun, presence-controlled or moisture-controlled
Typical use: For barrier-free automatic operation in bathrooms, toilets and kitchens, as well as rooms with windows.

The system components

ELS-VF
Moisture-controlled exhaust air fan in the bathroom with intelligent moisture progression control to remove excessively high humidity in the air.

The type of increase in moisture is permanently checked by a microprocessor. The ventilation is demand-based and combined with a flow-controlled ELS in the toilet or kitchen.

Incoming outside air elements
Incoming outside air elements for the reliable and efficient supply of incoming air. Types ALEF or ZL are built into window frames or walls.
Exhaust air systems without suitable incoming outside air elements are not suitable for function and do not comply with the state of the art.

Time-controlled ventilation
Use: Ventilation of toilets, showers, bathrooms, including rooms in office and administrative buildings, retirement homes, hospitals, etc.
Control: Interval-based or depending on use, i.e. at certain times of day.

Standard and demand-based ventilation: Ventilation of showers, bathrooms, WCs with high air contamination (e.g. in restaurants, offices).
The continuous, low-noise standard ventilation operation to combat smells and excess moisture. When the room is in use, the system manually switches to high-performance (demand-based level). This is automatically possible during certain times of day using a timer.

Applicable devices: All types with 2 or 3 power settings.
Switching: Required for manual DSEL 2 or DSEL 3 operation. We recommend appropriate components for automatic operation.
Residential ventilation to DIN 18017-3

ELS-VF automatic moisture progression system is far superior to conventional humidity switches and prevents the build-up of damp on the walls, ceiling and equipment. It guarantees a healthy climate without mould and bad smells with minimal energy consumption.

Advanced electronics
ELS-VFs are equipped with fully-automatic, moisture-dependent controls. The microprocessor-controlled electronics detect two forms of moisture increase:
- Given a normal increase in moisture over time (e.g. washing, drying, temperature drops), the fan switches on when the defined setpoint is reached and runs until the moisture in the room air has dropped by approximately 10%, but at least for the duration of the defined overrun.
- In the case of a rapid increase in moisture (e.g. due to showering, bathing), the ventilator turns on before the defined limit value is reached to get rid of the excess moisture in the room as effectively and quickly as possible. This prevents mirrors or walls from suffering from moisture and damp damage and the comfortable range in the room (40-70% relative humidity) is quickly restored. As soon as the relative humidity has fallen by 10%, but not before the end of the pre-set overrun time, the fan turns off.

In the case of extended, excessive moisture increases (e.g. storms in summer, damp washing in the room) if air circulation is insufficient as the intake air openings are too small or closed, the fan turns off automatically after two hours of continuous operation. In these cases, the control has identified that further ventilation will not lower the humidity. Depending on the further moisture progression, the fan will start automatically within the next 2 to 6 hours to once again reduce humidity by around 10%. This control behaviour is repeated until humidity has fallen to the desired level. The moisture progression system automatically adjusts itself to achieve optimal humidity reduction while expending the minimum amount of energy.

Typical use: Barrier-free, automatic ventilation without using a switch.
Control: PIR controlled.

The top solution for barrier-free automatic operation: Integrated PIR sensor

Optimal fan control in toilets and sanitary facilities with industrial and private use for example, in hostels, hotels, offices, etc.

Helios offers the ideal solution: ELS-VP is fitted with a PIR as standard; the fan starts automatically when a person enters the room. The electrical connection is direct to the power supply without need for a switch.

ELS-VP with motion sensor ventilates automatically as required when entering the room.
An integrated PIR sensor registers the presence of people and switches on the unit. The unit operates for 15 minutes. If a movement in the room is detected within that time, the operation time is extended respectively.
When leaving the room, there is a run-on time of 15 minutes.
Ideally the fan should be fitted so the movement in the room is always detected, so position is important and the PIR sensor should not be hindered by obstructions.

Typical use: Barrier-free, automatic ventilation without using a switch.

Helios offers the ideal solution: ELS-VP is fitted with a PIR as standard; the fan starts automatically when a person enters the room. The electrical connection is direct to the power supply without need for a switch.

ELS-VP with motion sensor ventilates automatically as required when entering the room.

An integrated PIR sensor registers the presence of people and switches on the unit. The unit operates for 15 minutes. If a movement in the room is detected within that time, the operation time is extended respectively.

When leaving the room, there is a run-on time of 15 minutes.

Ideally the fan should be fitted so the movement in the room is always detected, so position is important and the PIR sensor should not be hindered by obstructions.

Typical use: Barrier-free, automatic ventilation without using a switch.
Control: PIR controlled.

Supply air is necessary so that humid air can be extracted by the fan.
The flush mounted casings ELS-GU and -GUBA are totally adaptable in terms of installation position and range of use.

The standard flush mounted casing ELS-GU and -GUBA, the flush mounted casing with fire protection shutter, is the ideal solution for many different applications.

Whether for one and two room ventilation or for toilet seat adaptation via flushing pipe. The flush mounted installation is suitable for wall, shaft, plasterboard or ceiling.

The discharge spigot can be positioned alternatively to the back or on top, also the casing, can be turned by 90° to the left or to the right. Simple and without tools.

One casing type for every installation form and every ventilation demand. This is not only practical at the building site but also makes stock keeping extremely economical.

See accompanying examples:
1. One room ventilation
 Extraction via facia
2. Two room ventilation or toilet seat adaptation via flushing pipe
 Discharge to the top
3. Two room ventilation or toilet seat adaptation via flushing pipe
 Discharge to the back

During the construction of the mono tube ventilation system from Helios professionals were at work. This can be seen above all in many clever assembly details.

Trouble-free quick installation

The universal mounting bracket ELS-MHU brings the necessary flexibility with installation in shafts and false ceilings.

All flush mounted casings can be easily positioned vertically, in height or perpendicular in a few minutes. ELS-MHU is suitable for the installation of flush mounted casings with and without fire protection encasement.

On the rear of the casing types ELS-GU and -GUBA embedded turn lock slots for hexagon or square head screws take up the mounting holder which is vertically adjustable as well as in height and depth. Alternatively there are two predetermined breaking points for direct screw connection with elements by customer.

For plasterboard system integration, the ELS-MB forms the ideal combination with system elements.

Plasterboard adapter ELS-VA

Simplifies the installation of casing -GUA, -GUBA in covered shafts and plasterboards. Make penetration. Mark the square opening with press pins at casing and cut it out. Connect flexible duct with discharge spigot. Make electrical connection. Insert casing with plasterboard adapter room-sided and screw in place. Everything fits in a few minutes!
Information about fire protection in buildings
Planning and execution of ventilation systems has to comply with national fire protection requirements. Usually buildings with more than two storeys are subject to such requirements.

In order to prevent fires from spreading to other fire zones, the following solutions can be used for the installation of mono tube ventilation systems depending on structural circumstances:

Flush mounted installation in fire resistant shaft (F90) or L90-ventilation duct.
Applicable casings: Every ELS-GUB casing with fire protection encasement and back draught shutter K90-18017. Steel flexpipe connection for second room connection only.

Flush- or surface mounted installation outside of fire resistant shafts (F90) or L90 ventilation ducts
Applicable casings: -GUBA (flush) or -GAPB (surface) with fire protection encasement and back draught shutter K90-18017. Steel flexpipe connection to the main riser.

Surface mounted installation on walls of fire resistant shafts (F90) or L90 ventilation ducts.
Applicable casings: ELS-GAPB casing with fire protection encasement and back draught shutter K90-18017.

Fire protection solution with fire damper ELS-D
Applicable casings: Universal casing without fire protection ELS-GU for flush mounted or ELS-GAP for surface mounted installation.

Flush mounted casing ELS-GU
ELS-GU can be used like type -GUBA and shown in detail on the page 54 in universal variety.

Surface mounted installation ELS-GAP
Installation and positioning like ELS-GAPB, see left.
ELS casings without fire protection, for flush and surface mounted installation

<table>
<thead>
<tr>
<th>Casing</th>
<th>Type / Specification</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flush mounted casing without fire protection, with airtight backdraught shutter. Spigot lateral, to the top (as supplied), rotatable to the left or right. Changeable by means of an accessory set ELS-ARS for discharge to the back in any position. Quick plug connector for electrical connection which is removable. Made from polymer (white), fire class B 2. Reinsertable cover plate. Spigot diameter 80 mm. Generally approved by the DIBt with approval no. Z-51.1-193. Type ELS-GU Ref. no. 8111</td>
<td>For ventilation of kitchen*, bathroom or toilet, by means of accessory set also for two room ventilation of bathroom and toilet*. Flush mounted installation in wall, ceiling or shafts. Connection of up to 3 casings per floor possible. For connection to main duct up to 2 floors without fire protection requirement. With fire protection by the use of fire damper in main duct for more than 20 floors possible.</td>
<td>![ELS-ARS](Ref. no. 8185) ![ELS-ZS](Ref. no. 8186)</td>
</tr>
<tr>
<td>Surface mounted casing without fire protection, with airtight backdraught shutter installed in the discharge spigot, for any mounting position and rotatable by 90°. With quick plug connector for electrical connection. With quick plug connector for electrical connection 2. Discharge spigot diameter 80 mm. Generally approved by the DIBt with approval no. Z-51.1-193. Type ELS-GAP Ref. no. 8127</td>
<td>For ventilation of kitchen*, bathroom or toilet. Surface mounted installation in wall or ceiling. Connection of up to 3 casings per floor possible. For connection to main duct up to 2 floors without fire protection requirement. With fire protection by the use of fire damper in main duct for more than 20 floors possible.</td>
<td>— ![ELS-ARS](Ref. no. 8185) ![ELS-ZS](Ref. no. 8186)</td>
</tr>
</tbody>
</table>

ELS casings with fire protection shutter, for flush and surface mounted installation

<table>
<thead>
<tr>
<th>Fire protection</th>
<th>Casing</th>
<th>Type / Specification</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flush mounted polymer casing with fire protection shutter K 90, metal discharge spigot with automatic backdraught shutter and shutoff with release of fusible link. Discharge spigot lateral to the top (as supplied), rotatable to the left or right. Changeable by means of an accessory set for discharge to the back in any position. Reinsertable cover plate. Spigot diameter 80 mm. Generally approved by the DIBt with approval no. Z-51.1-193. Type ELS-GUBA Ref. no. 8114</td>
<td>For ventilation of kitchens*, bathroom or toilet. By means of accessory set ELS-ZS also for two room ventilation of bathroom and toilet*. Flush mounted installation in ceiling or wall, as well as outside of K 90-shafts suitably fire rated. Connection of up to 3 casings per floor on more than 20 floors possible.</td>
<td>![ELS-ARS](Ref. no. 8185) ![ELS-ZS](Ref. no. 8186)</td>
<td></td>
</tr>
<tr>
<td>Surface mounted casing with fire protection shutter K 90, metal discharge spigot with automatic backdraught shutter and shutoff with release of fusible link. For any mounting position and rotatable by 90°. With quick plug connector for electrical connection. Made from polymer (white), fire class B 2. Discharge spigot diameter 80 mm. Generally approved by the DIBt with approval no. Z-51.1-193. Type ELS-GAPB Ref. no. 8128</td>
<td>For ventilation of kitchens*, bathroom or toilet. Surface mounted wall or ceiling installation. Connection of up to 3 casings per floor on more than 20 floors possible.</td>
<td>— ![ELS-ARS](Ref. no. 8185) ![ELS-ZS](Ref. no. 8186)</td>
<td></td>
</tr>
</tbody>
</table>

* For kitchens and two room ventilation of bathroom and toilet use of fan unit with 100 m³/h recommended.

** Details and specifications to ELS-accessories see page 60.

For buildings with up to 2 floors without fire protection.

For fire dampers are used then more than 20 floors.

For positioning outside of F90 ventilation shaft.
ELS flush mounted casings with fire protection encasement, for one room ventilation

<table>
<thead>
<tr>
<th>Fire protection</th>
<th>Casings</th>
<th>Type / Specification</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flush mounted casing with fire protection encasement K 90, Metal discharge spigot with automatic backdraught shutter and shut-off with release of fusible link. Discharge spigot lateral to the top (as delivered), turnable to the left or right. Quick plug connector for electrical connection removable. Reinsertable cover for protection when plastering. Spigot diameter 80 mm. Generally approved by the DIBt with approval no. Z-51.1-193.</td>
<td>Type ELS-GUB</td>
<td>Ref. no. 8112</td>
<td>For ventilation of kitchen*, bathroom or toilet, wall, ceiling or F90 qualified shafts suitably fire rated. Connection of up to 3 casings per floor on more than 20 floors possible.</td>
</tr>
<tr>
<td>As ELS-GUB, however discharge spigot to the back, rotatable by 90° in any position. For the shortest connection to the main line. Generally approved by the DIBt with approval no. Z-51.1-193.</td>
<td>Type ELS-GUBR</td>
<td>Ref. no. 8113</td>
<td>As Type ELS-GUB.</td>
</tr>
</tbody>
</table>

ELS flush mounted casings with fire protection encasement, for two room ventilation

<table>
<thead>
<tr>
<th>Fire protection</th>
<th>Casings</th>
<th>Type / Specification</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flush mounted casing with fire protection encasement K 90 and spigot for second room on the left. Metal discharge spigot with automatic backdraught shutter and shut-off with release of fusible link. Discharge spigot for main room above (as delivered), laterally rotatable to the left or right. Quick plug connector for electrical connection removable. Reinsertable cover plate. Spigot diameter 80 mm. Generally approved by the DIBt with approval no. Z-51.1-193.</td>
<td>Type ELS-GUBZL</td>
<td>Ref. no. 8115</td>
<td>Two room ventilation of bathroom and toilet*. Installation in wall, ceiling and F90 shafts suitably fire rated. Connection of up to 3 casings per floor on more than 20 floors possible.</td>
</tr>
<tr>
<td>As ELS-GUBZL, however spigot for second room on the right. Generally approved by the DIBt with approval no. Z-51.1-193.</td>
<td>Type ELS-GUBZR</td>
<td>Ref. no. 8117</td>
<td>As Type ELS-GUBZL.</td>
</tr>
<tr>
<td>As ELS-GURZL, however discharge spigot to the back and rotatable by 90° into any position. Generally approved by the DIBt with approval no. Z-51.1-193.</td>
<td>Type ELS-GUBRZL</td>
<td>Ref. no. 8116</td>
<td>As Type ELS-GUBZL.</td>
</tr>
<tr>
<td>As ELS-GUBZR, however discharge spigot to the back and rotatable by 90° into any position.</td>
<td>Type ELS-GUBRZR</td>
<td>Ref. no. 8118</td>
<td>As Type ELS-GUBZL.</td>
</tr>
</tbody>
</table>

*For kitchens and two room ventilation of bathroom and toilet use of fan unit with 100 m³/h recommended. Details and specifications to ELS-accessories see page 60. The check valve for fire protection casings fulfills the requirements of a cold smoke shutter.
ELS fan units

with 60 m³/h air flow volume

60 m³/h

For bathrooms or toilets

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELS-V 60 Ref. no. 8131</td>
<td>Fan unit with 60 m³/h air flow volume. Delivered complete with flat facia (alpine white) and ultraSilence® technology. With permanent filter and filter control as standard. Integrated quick plug connector for electrical connection. Insulation class II, protection to IP 55, for installation in zone 1 of bathrooms. Maintenance free, energy saving ball bearing motor 230 V–, 50 Hz, 18 W. Sound power 39 dBA(^1), sound pressure 35 dBA(^1). General technical approval no. Z-51.1-193.</td>
<td>For ventilation of shower, bathroom or toilet. Control manually via the light switch. The overrun which is necessary in window less rooms is to be provided by means of an overrun timer (accessories).</td>
</tr>
</tbody>
</table>

60/35 m³/h

2 speeds 60/35 m³/h

For bathrooms or toilets

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELS-V 60/35 Ref. no. 8133</td>
<td>Fan unit with 2 speeds (60/35 m³/h) for standard and demand-based ventilation. Delivered complete with flat facia (alpine white) and ultraSilence® technology. With permanent filter and dirty filter indicator as standard. Integrated quick plug connector for electrical connection. 230 V–, 50 Hz, 18/9 W. Sound power 39/30 dBA(^1), sound pressure 35/26 dBA(^1). Otherwise as ELS-V 60.</td>
<td>For ventilation of small rooms (shower, bathroom, toilet) with high polluted air. The low speed can be connected for continuous trickle operation. The high speed is then controlled manually via the light switch. Manual control of both speed steps with switch DSEL 2 possible. Run on time by using available accessory.</td>
</tr>
</tbody>
</table>

| **ELS-VN 60/35** Ref. no. 8139 | As ELS-V 60/35, but with integrated overrun timer, run on time approx. 6, 15, 21 min. (adjustable), delayed start approx. 45 sec. (non-adjustable). | As ELS-V 60/35. The built-in overrun timer causes extended operation on high performance level after manual switching off. |

| **ELS-VF 60/35** Ref. no. 8163 | As ELS-V 60/35, but with electronic humidity sensor. Standard ventilation at continuous operation. Automatic ventilation when set humidity set point is reached, switches off automatically after humidity reduction of approx. 10%. In case of manual operation, delayed start 0 or 45 sec., run on time 6, 10, 15 or 21 min. adjustable. | Ideal for preventing humidity damage. See page 53 for details. The small step can be used for continuous operation. Large step is automatically activated depending on humidity. Manual control of both steps possible with DSEL 2 switch. |

\(^1\) Noise data for surface installation see table on page 64.
ELS fan units with 100 m³/h air flow volume

100 m³/h air flow volume

For bathrooms and toilets or kitchens

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Application</th>
<th>Accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELS-V 100</td>
<td>Fan unit with 100 m³/h air flow volume. Delivered complete with flat facia (alpine white) and ultraSilence® technology. With permanent filter and filter control as standard. Integrated quick plug connector for electrical connection. Insulation class II, protection to IP 55, for installation in zone 1 of bathrooms. Maintenance free, energy saving ball bearing motor 230 V~, 50 Hz, 29 W. Sound power 51 dB(A)¹, sound pressure 47 dB(A)². General technical approval no. Z-51.1-193.</td>
<td>Simultaneous ventilation of bathroom and toilet (flush mounted). Ventilation of domestic kitchens. Overrun function possible with accessories.</td>
<td>DSEL 2</td>
</tr>
<tr>
<td>ELS-VN 100</td>
<td>As ELS-V 100, but with integrated overrun timer, run on time approx. 6, 15, 21 min. (adjustable), delayed start approx. 45 sec. (non-adjustable).</td>
<td>Simultaneous ventilation of bathroom and toilet (overrun required by DIN). Ventilation of domestic kitchens.</td>
<td>DSEL 2</td>
</tr>
<tr>
<td>ELS-VNC 100</td>
<td>As ELS-V 100, but with adjustable overrun timer and interval operation. Delayed start 0 or 45 sec., run on time 6, 10, 15 or 21 min. and interval time 4, 8, 12 or 24 hours adjustable.</td>
<td>Automatic, periodic ventilation of rooms (also covers two-room ventilation) with irregular use, such as e.g. in hotels, holiday homes. Comfort solution in private sector.</td>
<td>DSEL 2</td>
</tr>
<tr>
<td>ELS-VP 100</td>
<td>As ELS-V 100, but with integrated motion sensor for automatic ventilation when entering the room. Run on time approx. 15 min. Electrical connection is direct to the power supply without need for a switch.</td>
<td>Automatic, presence-controlled ventilation without switch operation. Barrier-free with automatic function. See page 53 for details.</td>
<td>DSEL 2</td>
</tr>
</tbody>
</table>

100/60/35 m³/h

For bathrooms and toilets or kitchens

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Application</th>
<th>Accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELS-VN 100/60</td>
<td>Fan unit with 2 speeds (100/60 m³/h) for standard and demand-based ventilation and integrated overrun timer. Run on time approx. 6, 15, 21 min. (adjustable), Delayed start approx. 45 sec. (non-adjustable). Delivered complete with flat facia (alpine white) and ultraSilence® technology. With permanent filter and dirty filter indicator as standard. 230 V~, 50 Hz, 29/18 W. Sound power 51/39 dB(A)¹, sound pressure 47/35 dB(A)². Otherwise as ELS-V 100.</td>
<td>Simultaneous ventilation of bathroom and toilet (flush mounted). Ventilation of domestic kitchens. With near-silent standard ventilation stage. The small performance step can be used for continuous operation. The demand-based ventilation is activated manually by light switch. Manual control of both steps with DSEL 2 switch (accessories).</td>
<td></td>
</tr>
<tr>
<td>ELS-V 100/60/35</td>
<td>As ELS-V 100, but with 3 speeds (100/60/35 m³/h) for demand-based and standard ventilation. 230 V~, 50 Hz, 29/18 W. Sound power 51/39/30 dB(A)¹, sound pressure 47/35/26 dB(A)².</td>
<td>Medium or small performance step can be used for continuous operation and switched with DSEL 2. Manual 3-step control with DSEL 3.</td>
<td></td>
</tr>
<tr>
<td>ELS-VF 100/60/35</td>
<td>Fan unit with 3 speeds (100/60/35 m³/h) for demand-based and standard ventilation and with electronic humidity sensor. 230 V~, 50 Hz, 29/18 W. Sound power 51/39/30 dB(A)¹, sound pressure 47/35/26 dB(A)². Otherwise as ELS-VF 60/35.</td>
<td>Ideal for preventing humidity damage. See page 53 for details. The small or medium step can be switched with DSEL 2 for continuous operation. Large step is automatically activated depending on humidity. Manual 3-step control with DSEL 3.</td>
<td></td>
</tr>
</tbody>
</table>

¹ Noise data for surface installation see table on page 64.
Adaption kit for rear discharge
Type ELS-ARS Ref. no. 8185
For discharge to the rear with all flush mounted casings ELS-GU and -GUBA without fire protection encasement. Simply fit the ARS diverter on the discharge side of the fan unit to ensure a proper air guide.

Toilet extraction kit
Type ELS-WCS Ref. no. 8191
WC-Kit for connection of toilet seat extraction system in combination with room ventilation; for casing types ELS-GU, -GUBA. The connection between casing and flushing tank tube is carried out with customary plastic tubes. Scope of delivery: Cap, bend 90°, two-step spigot Ø 40 and 30 mm.

Second room kit
Type ELS-ZS Ref. no. 8186
Inlet air plenum box for flush mounted installation for connection with all casings for second room connection ELS-GU. Design awarded facia in white, with covered front and air inlet on all sides. Integrated, easy accessible air filter. Including second room spigot for casing ELS-GU and -GUBA.

Universal mounting bracket
Type ELS-MHU Ref. no. 8187
Principally for flush mounted casing installation in shafts, especially with casings with fire protection encasement. For fixing on ceilings or walls. Adjustable vertically, in height and perpendicular. Suitable for all flush mounted casings.

Mounting holder
Type ELS-MB Ref. no. 8188
For integration of flush mounted casings in plasterboard systems in connection with system elements of plasterboard supplier. The mounting holder is simply fixed with hexagon or square head screws to the embedded turn lock slots on the back side of the ELS casing.

Spacer frame
Type ELS-AGR Ref. no. 8193
Covers up to 15 mm of flush-mounted casing, which was not installed level with the plaster or tiles. The spacer frame is simply fixed between the wall/ceiling and ELS inner facia.

Toilet extraction kit
Type ELS-WCS
WC-Kit for connection of toilet seat extraction system in combination with room ventilation; for casing types ELS-GU, -GUBA. The connection between casing and flushing tank tube is carried out with customary plastic tubes. Scope of delivery: Cap, bend 90°, two-step spigot Ø 40 and 30 mm.

Second room kit
Type ELS-ZS
Inlet air plenum box for flush mounted installation for connection with all casings for second room connection ELS-GU. Design awarded facia in white, with covered front and air inlet on all sides. Integrated, easy accessible air filter. Including second room spigot for casing ELS-GU and -GUBA.

Universal mounting bracket
Type ELS-MHU
Principally for flush mounted casing installation in shafts, especially with casings with fire protection encasement. For fixing on ceilings or walls. Adjustable vertically, in height and perpendicular. Suitable for all flush mounted casings.

Mounting holder
Type ELS-MB
For integration of flush mounted casings in plasterboard systems in connection with system elements of plasterboard supplier. The mounting holder is simply fixed with hexagon or square head screws to the embedded turn lock slots on the back side of the ELS casing.

Spacer frame
Type ELS-AGR
Covers up to 15 mm of flush-mounted casing, which was not installed level with the plaster or tiles. The spacer frame is simply fixed between the wall/ceiling and ELS inner facia.

Toilet extraction kit
Type ELS-WCS
WC-Kit for connection of toilet seat extraction system in combination with room ventilation; for casing types ELS-GU, -GUBA. The connection between casing and flushing tank tube is carried out with customary plastic tubes. Scope of delivery: Cap, bend 90°, two-step spigot Ø 40 and 30 mm.

Second room kit
Type ELS-ZS
Inlet air plenum box for flush mounted installation for connection with all casings for second room connection ELS-GU. Design awarded facia in white, with covered front and air inlet on all sides. Integrated, easy accessible air filter. Including second room spigot for casing ELS-GU and -GUBA.

Universal mounting bracket
Type ELS-MHU
Principally for flush mounted casing installation in shafts, especially with casings with fire protection encasement. For fixing on ceilings or walls. Adjustable vertically, in height and perpendicular. Suitable for all flush mounted casings.

Mounting holder
Type ELS-MB
For integration of flush mounted casings in plasterboard systems in connection with system elements of plasterboard supplier. The mounting holder is simply fixed with hexagon or square head screws to the embedded turn lock slots on the back side of the ELS casing.

Spacer frame
Type ELS-AGR
Covers up to 15 mm of flush-mounted casing, which was not installed level with the plaster or tiles. The spacer frame is simply fixed between the wall/ceiling and ELS inner facia.
Fire protection

The transfer of fire and smoke to other floor levels must be prevented when buildings are higher than two storeys with certified fire protection elements, classification K 90-18017.

The following options and the options described in detail on page 55 can be used here according to structural circumstances.

- Casing ELS-GUB, with fire protection cladding
 In fire-resistant shaft (F90) or L90 ventilation duct.
- Casing ELS-GUBA, -GAPB with fire protection shutter
 for casing positioning outside of fire resistant shaft (F90) or L90 ventilation duct. Connection to main duct with flexible steel duct.
- Fire damper ELS-D
 For installation in ventilation main duct. Approved for use in ventilation shafts and within mixed service shafts (even with flammable services), only needs to be covered with a 12.5 mm plasterboard. All ELS fans, connected with flexible aluminium ducting do not need any fire protection classifications.

The low cost and assembly-friendly flexible aluminium ducting can be used for the connections. See page 522 for detailed information.

<table>
<thead>
<tr>
<th>ND mm main duct</th>
<th>100</th>
<th>125</th>
<th>140</th>
<th>160</th>
<th>180</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type ELS-D</td>
<td>0270</td>
<td>0185</td>
<td>0186</td>
<td>0187</td>
<td>0188</td>
<td>0271</td>
</tr>
</tbody>
</table>

Overflow

LTG

Discreet, screened door transfer grille made from impact resistant polymer, for door installation. See ventilation grille product page for detailed description.

- Fire damper ELS-D
 For installation in ventilation main duct. Approved for use in ventilation shafts and within mixed service shafts (even with flammable services), only needs to be covered with a 12.5 mm plasterboard. All ELS fans, connected with flexible aluminium ducting do not need any fire protection classifications.

The low cost and assembly-friendly flexible aluminium ducting can be used for the connections. See page 522 for detailed information.

Intake air elements

ZL

Universally applicable supply air units and thermostatic supply valves for the demand-based intake air volume control. See intake air element product page for detailed description.

- Installation in window frames

ALEF

Intake air element with air flow controller and limiter. See intake air element product page for detailed description. Ideally suited for retrofitting and new construction.

Overflow

LTG

Discreet, screened door transfer grille made from impact resistant polymer, for door installation. See ventilation grille product page for detailed description.

- Fire damper ELS-D
 For installation in ventilation main duct. Approved for use in ventilation shafts and within mixed service shafts (even with flammable services), only needs to be covered with a 12.5 mm plasterboard. All ELS fans, connected with flexible aluminium ducting do not need any fire protection classifications.

The low cost and assembly-friendly flexible aluminium ducting can be used for the connections. See page 522 for detailed information.

<table>
<thead>
<tr>
<th>ND mm main duct</th>
<th>100</th>
<th>125</th>
<th>140</th>
<th>160</th>
<th>180</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type ELS-D</td>
<td>0270</td>
<td>0185</td>
<td>0186</td>
<td>0187</td>
<td>0188</td>
<td>0271</td>
</tr>
</tbody>
</table>

Spare filters

ELF

Filter mats made from regenerable synthetic fibre, class G2.

- Permanent filter for fan units
 ELS-V, dishwasher-safe, contents = 2 pcs.
- Second room plenum box
 ELS-ZS, contents = 5 pcs.

Intake air elements

ZL

Universally applicable supply air units and thermostatic supply valves for the demand-based intake air volume control. See intake air element product page for detailed description.

- Installation in window frames

Intake air element for installation in window frames

- As ALEF, but also
 - with air flow controller and limiter

ALF 30 2100
ALF 45 2101

ALF Hygro 6/45 2056

ALF Hygro 6/45 2057

Thermostatic supply valve

ZTV 80 0078
ZTV 100 0073
ZTV 160 0074

Spare air filter

ELF

Filter mats made from regenerable synthetic fibre, class G2.

- Permanent filter for fan units
 ELS-V, dishwasher-safe, contents = 2 pcs.
- Second room plenum box
 ELS-ZS, contents = 5 pcs.

Information Page

Dimensions, detailed technical information as well as further sizes:

- Ventilation grilles 487 on Intake air elements 512 on Fire protection elements for use in multi-storey construction with more than 2 full storeys 516 on Controllers and switches 525 on
The regulations in DIN 18017-3 have been integrated in the diagrams below for simple determination.

60 m³/h Bathrooms or toilets

Installation of 1 unit per floor
with 60 m³/h planned air flow volume and operation of all units at the same time.

Installation of 2 units per floor
with 60 m³/h planned air flow volume and operation of all units at the same time.

Assuming a room height of 2.75 m, a straight ducting without bends, a ducting length of max. 1.5 m from last unit to air extract above the roof as well as max. 60 Pa between ventilated room and exhaust opening, the required main riser diameter can be read from the diagram above.

They are valid for a planned air flow volume of 60 or 100 m³/h per unit and operation of all units at the same time.

Standard and individual plans can be created easily and quickly with the Helios ELS software. Graphic representation, dimensioning of the main duct with or without warpage become child’s play. Cost allocation and materials list are automatically created and printed. Information on the planning and design can be found in DIN 18017-3 and the approval documents and test certificates.

We will be happy to send approval documents and test certificates upon request. Approval no. Z-51.1-193.

System dimensioning for these floor heights is not recommended. Preferred system dimensioning in blue area (comfort zone).

Without reliable supply air backflow through intake air inflow elements ALEF and ZL, the exhaust air systems are not functional and do not comply with engineering rules.
100 m³/h Kitchens and two room ventilation

Example 1:
Type of room: Bathroom/Toilet
V = 60 m³/h
Units per floor: 1
Floor levels: 9
Main riser diameter: 125 mm

According to diagram ①
Main riser diameter: 125 mm

Example 2:
Type of room: Bathroom and separate toilet with 1 unit or kitchen ventilation
V = 100 m³/h (Bathroom 60 m³/h and toilet 40 m³/h)
Units per floor: 2
Floor levels: 6
Main riser diameter: 200 mm

According to diagram ⑥
Main riser diameter: 200 mm
Technical data

<table>
<thead>
<tr>
<th>Type</th>
<th>Fan unit</th>
<th>ELS</th>
<th>-V 60</th>
<th>-VN 60</th>
<th>-VC 60</th>
<th>-VF 60</th>
<th>-V 60/35</th>
<th>-V 100</th>
<th>-VN 100</th>
<th>-VNC 100</th>
<th>-VP 60</th>
<th>-VF 60</th>
<th>-V 60/35</th>
<th>-V 100/60/35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. no.</td>
<td></td>
<td>8131</td>
<td>8137</td>
<td>8143</td>
<td>8149</td>
<td>8161</td>
<td>8133</td>
<td>8139</td>
<td>8163</td>
<td>8132</td>
<td>8138</td>
<td>8144</td>
<td>8150</td>
<td>8141</td>
</tr>
<tr>
<td>Run on time, approx. min.</td>
<td></td>
<td></td>
<td>6, 15</td>
<td>10, 21</td>
<td></td>
<td>6, 10</td>
<td>15, 21</td>
<td>6, 10</td>
<td>15, 21</td>
<td></td>
<td>6, 15</td>
<td>10, 15</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Interval operation, hrs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4, 8, 12</td>
<td>24</td>
<td>12, 24</td>
<td></td>
<td></td>
<td>12, 24</td>
<td></td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Air flow volume approx. m³/h</td>
<td></td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60/35</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Power consumption approx. Watt</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Sound pressure level L₁₀₀₀ dB(A) at 10 m² equivalent absorption surface flush)</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Electric connection: 230 V~, 50 Hz</td>
<td></td>
<td>NYM-0</td>
</tr>
<tr>
<td>Electrical power supply in mm²</td>
<td></td>
<td>2 x 1,5</td>
<td>2 x 1,5</td>
<td>3 x 1,5</td>
</tr>
</tbody>
</table>

1) in combination with casing type ELS-GU, discharge lateral.

* for deactivation of automatic function.

All power and noise data according to DIN 24163, DIN 24166, DIN 45635, DIN 44974.
Central ventilation system ZLS-DV EC according to DIN 18017-3.

ZLS-DV EC is the ideal central ventilation system in multi-storey construction according to DIN 18017-3.

- Humid, polluted air is extracted in line with requirements. At the same time, the pressure-controlled controller integrated in the fan guarantees that a set negative pressure is maintained. Thus, the planned air flow volume remains unchanged in all other rooms.

- Energy-saving EC technology with highest efficiency, even for controlled operation, and up to 50 % energy saving in comparison with conventional motors.

EXTRACT AIR

The roof fan is connected to the central exhaust shaft. The extract air from wet-rooms and kitchens leaves via extract air elements with demand-oriented function. The automatic, stepless power adjustment takes place via the integrated pressure sensor.

OUTSIDE AIR

Draught-free outside air is supplied to the living and bedrooms via automatic elements for window or wall installation.

FIRE PROTECTION

The spread of fire to other floors is prevented according to building requirements in the classified and unclassified shaft.

66 on
68
69
■ Extremely weather-resistant, polymer EC roof fan for an extensive area of application, diagonal discharge.

■ Similarities

DV EC Pro and DV EC Eco

■ Casing

Aerodynamically designed casing from high-quality polypropylene in grey with diagonal air discharge. Air flow temperatures from –30 to +60 °C.

■ Impeller

Diagonal impeller made from aluminium, the motor-impeller unit is dynamically balanced for low noise operation.

■ Motor

Energy-efficient EC external rotor motor protected to IP 54. Optimised level of efficiency for speed control for low operating costs. Steplessly speed controllable. Maintenance-free and interference-free, ball bearing mounted.

■ Motor protection

Integrated electronic temperature monitoring for EC motor and electronics.

■ Electrical connection

Standard external terminal box (protection class IP 65) on casing. Connection voltage 1 ph., 230 V, 50 Hz.

■ Installation

Horizontal installation on the roof. In case of pitched roofs, a suitable base must be provided to prevent water entry. Extensive accessories facilitate the assembly of the fan to the ducting system in the building.

■ Sound levels

Total sound power levels and the spectrum figures in dB(A) are given for:

- Sound power intake
- Sound power exhaust

You can also find sound pressure levels at 4 m (free field conditions) in the table below and below the performance curve.

■ Specification

DV EC Pro

■ Speed control

Ideal as central exhaust air fan for multi-storey building according to DIN 18017-3.

- In connection with other components (accessories), a complete central ventilation system can be developed according to DIN 18017-3 with demand-driven ventilation.

- Integrated pressure control for air flow volume stabilisation in the connected rooms by automatic speed adaptation with almost constantly good level of efficiency.

- Integrated pressure sensor 0–300 Pa.

- Short pay back time due to high energy conservation.

- Four potentiometers integrated in the control permit an adjustment to the operating data. The desired operating point can be set directly on site.

- Integrate serial Bus port (RS 485) for connection of a PC/laptop in combination with the interface (accessories).

■ Specification

DV EC Eco

■ Speed control

Stepless speed control with a speed-potentiometer PU/PA 10 (accessories).

- In connection with the universal control system EUR EC or electronic pressure/temperature controllers EDR/ETR (accessories, see table below), the fan can be used for stepless differential pressure, differential temperature or flow velocity regulation.

- For example, the performance levels are shown in the performance curves.

<table>
<thead>
<tr>
<th>Type</th>
<th>Ref. no.</th>
<th>Maximum R.P.M. approx.</th>
<th>Air flow volume (m³/h)</th>
<th>Sound pressure case breakout (dB(A) in 4 m)</th>
<th>Power consumption at maximum R.P.M. (kW)</th>
<th>Wiring diagram</th>
<th>max. air flow temperature (°C)</th>
<th>Weight net approx. (kg)</th>
<th>Timer / Universal control system</th>
<th>Speed-potentiometer flush surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type DV EC Pro, 1 ph. motor, 230 V, 50/60 Hz, EC motor, IP 54</td>
<td></td>
</tr>
<tr>
<td>DV EC 200 Pro</td>
<td>8385</td>
<td>1810</td>
<td>2010</td>
<td>52</td>
<td>0.18</td>
<td>1.38</td>
<td>863.1</td>
<td>60</td>
<td>17.0</td>
<td>—</td>
</tr>
<tr>
<td>DV EC 250 Pro</td>
<td>8386</td>
<td>1640</td>
<td>3700</td>
<td>60</td>
<td>0.41</td>
<td>1.78</td>
<td>863.1</td>
<td>60</td>
<td>23.0</td>
<td>—</td>
</tr>
<tr>
<td>DV EC 400 A Pro</td>
<td>8387</td>
<td>1020</td>
<td>4070</td>
<td>51</td>
<td>0.30</td>
<td>1.33</td>
<td>863.1</td>
<td>60</td>
<td>33.0</td>
<td>—</td>
</tr>
<tr>
<td>DV EC 400 B Pro</td>
<td>8388</td>
<td>1425</td>
<td>5580</td>
<td>65</td>
<td>0.75</td>
<td>3.32</td>
<td>863.1</td>
<td>60</td>
<td>35.0</td>
<td>—</td>
</tr>
</tbody>
</table>

■ Type DV EC Eco, 1 ph. motor, 230 V, 50/60 Hz, EC motor, IP 54

<table>
<thead>
<tr>
<th>Type</th>
<th>Ref. no.</th>
<th>Maximum R.P.M. approx.</th>
<th>Air flow volume (m³/h)</th>
<th>Sound pressure case breakout (dB(A) in 4 m)</th>
<th>Power consumption at maximum R.P.M. (kW)</th>
<th>Wiring diagram</th>
<th>max. air flow temperature (°C)</th>
<th>Weight net approx. (kg)</th>
<th>Timer / Universal control system</th>
<th>Speed-potentiometer flush surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type DV EC Eco, 1 ph. motor, 230 V, 50/60 Hz, EC motor, IP 54</td>
<td></td>
</tr>
<tr>
<td>DV EC 200 Eco</td>
<td>8320</td>
<td>1810</td>
<td>2010</td>
<td>52</td>
<td>0.18</td>
<td>1.38</td>
<td>991</td>
<td>60</td>
<td>17.0</td>
<td>EUR EC1 1347</td>
</tr>
<tr>
<td>DV EC 250 Eco</td>
<td>8322</td>
<td>1640</td>
<td>3700</td>
<td>60</td>
<td>0.41</td>
<td>1.78</td>
<td>991</td>
<td>60</td>
<td>23.0</td>
<td>EUR EC1 1347</td>
</tr>
<tr>
<td>DV EC 400 A Eco</td>
<td>8324</td>
<td>1020</td>
<td>4070</td>
<td>51</td>
<td>0.30</td>
<td>1.33</td>
<td>991</td>
<td>60</td>
<td>33.0</td>
<td>EUR EC1 1347</td>
</tr>
<tr>
<td>DV EC 400 B Eco</td>
<td>8326</td>
<td>1425</td>
<td>5580</td>
<td>65</td>
<td>0.75</td>
<td>3.32</td>
<td>991</td>
<td>60</td>
<td>35.0</td>
<td>EUR EC1 1347</td>
</tr>
</tbody>
</table>

1) Several EC fans can normally be connected

2) alternative electronic pressure/temperature controller (EDR/ETR, No. 1437/1438) in connection with power supply NG24, No. 1439, see Accessories

EUR EC — alternative electronic pressure/temperature controller (EDR/ETR, No. 1437/1438) in connection with power supply NG24, No. 1439, see Accessories

66
Extract air

Ready-to-install extract air element with polymer mounting ring.
To be inserted into ducting with diam. 125 mm. With demand-based and standard ventilation stages, electrical, humidity, motion and time controlled for use pursuant to the following table.
Types AE and AE GB with self-regulating air flow volume stabilisation. Humidity controlled types AE Hygro or type AE FV with filter and air flow volume control are preferable for kitchens and bathrooms.
Adapter filter element VFE
For installation in front of AE, if room air is polluted and greasy. See product page for details.

- Fire protection shutters for extract air elements AE
- Cold smoke shutter KAK
- Noise reduction element SVE (also suitable for supply air)

Overflow

Intake air elements
- Installation in wall openings

Universal supply unit and thermostatic valve for controlled air intake regulation.
See intake air element product pages for detailed descriptions.

- Installation in window frames

Intake air element with air flow volume control and limiter. See intake air element product pages for detailed descriptions. Ideally suitable for retrofitting and new construction.

Intake air elements with fire protection shutters, Intake air elements

<table>
<thead>
<tr>
<th>Bathroom</th>
<th>Toilet</th>
<th>Kitchen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Ref. no.</td>
<td>Type</td>
</tr>
<tr>
<td>Extract air element with self-regulating air flow volume stabilisation</td>
<td>AE 45*</td>
<td>2031</td>
</tr>
<tr>
<td>As above, but with two air flow volumes (demand-based and standard ventilation)</td>
<td>AE GB 20/75*</td>
<td>2035</td>
</tr>
<tr>
<td>As AE GB, with additional electric timer (without air flow volume stabilisation)</td>
<td>AE GBE 30/60*</td>
<td>2047</td>
</tr>
<tr>
<td>As AE GBE, but with motion sensor</td>
<td>AE B 15/30*</td>
<td>2055</td>
</tr>
<tr>
<td>Humidity controlled extract air unit with variable, limited air flow volume</td>
<td>AE Hygro 10/45*</td>
<td>2049</td>
</tr>
<tr>
<td>As AE Hygro, with additional electrically controlled demand-based ventilation stage</td>
<td>AE Hygro GBE 5/40/75*</td>
<td>2053</td>
</tr>
<tr>
<td>Extract air element AE FV, with filter and air volume control</td>
<td>AE FV 125</td>
<td>9478</td>
</tr>
<tr>
<td>Adapter filter element VFE</td>
<td>– to AE / AE GBE, AE Hygro, prevents contamination of the air extract element and ducting system</td>
<td>VFE 70/VFE 90</td>
</tr>
</tbody>
</table>

Fire and smoke shutter.
Suitable for insertion into spiral ducting without additional mounting frame or wall installation with mounting sleeve EH (accessories).
Cold smoke shutter with magnetic closure. Prevents backflow of cold smoke into other fire areas in central ventilation system.

Type	Ref. no.
Fire protection shutter K 90-18017	BAE 125*
Fire protection shutter K 90-4102	BAK 125*
Mounting sleeve (accessories for both types)	EH 125*
Cold smoke shutter	KAK 125*

Noise reduction elements for simple noise-absorption and air volume regulation in central ventilation systems through duct insertion. Also suitable for pressure regulation.

Type	Ref. no.
Noise reduction element SVE 100	ND 100 mm
Noise reduction element SVE 125*	ND 125 mm

Door grilles
Discreet, screened ventilation grille made from impact-resistant polymer for door installation.

Type	Ref. no.
Door grille LTGW	Made from white polymer
Door grille LTGB	Made from brown polymer

Intake air inlet element for installation in window frames

<table>
<thead>
<tr>
<th>Ø 80</th>
<th>Ø 100</th>
<th>Ø 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Ref. no.</td>
<td>Type</td>
</tr>
<tr>
<td>Supply air unit – Automatic temperature control incl. thermostatic valve, acoustic lining and external grille</td>
<td>ZLA 80</td>
<td>0214</td>
</tr>
<tr>
<td>Supply air element – Manual control in four stages incl. valve plate with pull cord, sound insulation and external grille</td>
<td>ZLE 100</td>
<td>0079</td>
</tr>
<tr>
<td>Thermostatic valve – For installation in existing ventilation openings</td>
<td>ZTV 80</td>
<td>0078</td>
</tr>
</tbody>
</table>

Intake air inlet element for installation in window frames

Type	Ref. no.			
Intake air inlet element for installation in window frames – with air volume control and limiter	ALEF 30	2100		
Intake air inlet element for installation in window frames – humidity control, with air volume control and limiter	ALEF Hygro 6/45	2055	ALEFS Hygro 6/45	2057
Residential ventilation to DIN 18017-3

Suitable for roof fan:

- **DV EC 200**
 - FDS 200: 1378
 - SSD 200: 5290
 - Flange connecting plate FAP 200: 8382
 - Base attenuator SSD 200: 5290
 - Fire protection ELS-D: Z-41.3-368
 - Control ZLS-ZU 31

- **DV EC 250**
 - FDS 250: 1379
 - SSD 250: 5292

- **DV EC 400**
 - FDS 400: 1380
 - SSD 400: 5291
 - Flange connecting plate FAP 400: 8384

Flange connecting plate FAP

Made from galvanised sheet steel. Allows the connection of the duct system and accessories to the roof fans DV EC, if no base attenuator SSD is used.

Flat roof base

- **FDS**
 - SSD

Base attenuator

- **FR**

Flange, flanged flexible connector

- **STS**

Fire protection

- **ELS-D**

Control

- **ZLS-IF**
 - **ZLS-ZU 31**

Electronic timer module with day/night regulator

Allows parallel operation of max. 31 DV EC roof fans. The rocker main switch activates the timer module. The day and night regulation is carried out via the settings on the display. Incl. main switch. 230 V, 50 Hz.

Interface

Interface for the start-up and/or control of the fan in connection with a PC/Laptop. Power supply unit, adaptor cable and software included.

Universal control system

For stepless control or regulation of single or three phase EC fans with a setpoint of 0-10 V DC.

Speed-potentiometer

For direct control/setpoint setting of EC fans with potentiometer inputs.