Helios expertise in aerodynamics. Axial fans without limits.

As one of the leading European fan manufacturers, Helios impresses with extraordinarily large, finely graduated range of highperformance axial, mediumpressure and RADAX[®] VAR high-pressure fans in all performance ranges.

The next pages present the range for high-performance axial fans with aerodynamic and acoustically optimised impeller and an innovative motor concept (diameter of 250 to 500 mm).

The particularly energy-saving EC models achieve energy savings of over 55% in comparison to conventional AC types thanks to their speed controls.

The AC high-performance axial fans with diameters of 250 to 500 mm and voltage control have an impressive, tried-andtested and robust design and increase efficiency by 25% while reducing noise by 50%.

The range with diameters of up to 1000 mm is supplemented by solutions for the area of technical building equipment (TGA), see the right hand side. ■ Fire gases and smoke extraction types in accordance with DIN 12101-3 in temperature classes F300 (60 minutes), F400 (120 minutes) and F600 (120 minutes). See separate catalogue.

Specialist solutions for technical building equipment (TGA) and large axial fans with diameters from 1000 to 7100 mm, volumes of up to 2.2 million m³/h can be produced in accordance with customer-specific requirements.

See www.AxialSoft.de for the design.

HIGH-PERFORMANCE AXIAL FANS Product-specific information and selection chart

Energy-efficient EC version Ø 250 – 500 mm ₩ = 1930 – 8300 m³/h

140 **142**^{on}

Standard AC version Ø 200 – 1000 mm $\dot{V} = 520 - 63\,420\,\text{m}^3/\text{h}$

Well-known users from all over the world trust Helios axial fans for ventilation, heating, cooling and drying applications. Large fans have been used successfully for decades e.g. in cooling towers and condensers.

MEDIUM PRESSURE **AXIAL FANS** Product-specific information and selection chart

Product-specific information and selection chart

INSTALLATION ACCESSORIES For axial and RADAX[®] VAR in-line fans

154^{on}

Ø 225 – 630 mm $\dot{V} = 950 - 26\,450 \,\text{m}^3/\text{h}$

Ø 225 – 630 mm <u>V = 900 – 22</u>310 m³/h

180°n 206°n 231°n

The following information completes the "General Technical Information" section.

Types

- Helios offer a wide range of products for various applications, i.e. particular help for problem solutions.
- Standard and high-performance fans in industrial design are available as standard in more than 20 standard sizes and more than 1000 types; many of which are shown in this catalogue.
- Closely matched air flow volume and pressure can be achieved on larger fans with a maximum diameter of 7100 mm through adjustable pitch angle. Four standard casing types are available.
- ☐ Types HQ, HW and HRF are available up to standard size 500 mm with highly-efficient EC motor technology for particularly energy-saving application and lowest operating costs.

Types in this catalogue 1. Wall fan HQ

Square plate with inlet cone Casing made from galvanised sheet steel. Motor with terminal box and motor side guard.

- 2. Built-in fans HW, AVD DK Circular plate with inlet cone Casing made from galvanised sheet steel. Motor with terminal box and motor side guard.
- Built-in wall fan HS Cylindrical duct case with spigot ends

For flush, wall or in-line duct installation. Casing made from galvanised sheet steel with circular stiffening rings.

 In-line fans HRF, AVD RK Cylindrical duct with flanges

on both ends For direct in-line installation in

ducting. Flanges made to DIN 24155, PT. 3. Casing made from galvanised sheet steel, additional terminal box (IP 55) on outer casing.

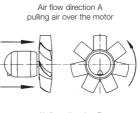
Motor

- AC types Robust 1 ph. or 3 ph. internal rotor motor with thermal contacts in the windings. Ball bearings lubricated for life.
- EC types
- Highly-efficient, speed controllable external rotor motor protected to IP 44 or 54. Ball bearings lubricated for life.

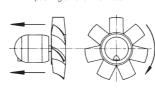
Impellers

- Depending on the performance requirements the impellers are made from various materials; see product pages. The standard design is made from reinforced polymers. Other materials, aluminium or steel, are available on special order.
- All impellers feature:
 Low noise characteristics.
- High efficiency.
- Vibration free operation due to dynamic balancing to DIN ISO 1940 T.1 – grade 6.3.
- Impellers made from other materials are available upon request.
- ☐ The standard models are suitable for air flow temperature from −30° to +60 °C. For higher temperatures metal impellers are available to order. See information on the product pages.

Pitch angle


- The standard products up to 630 mm Ø are equipped with fixed impeller blades.
- Starting from nominal size 710 mm (except type HQW 710/6), the impeller blades are available with order related pitch angles.
- ☐ The installation sizes Ø 800/4, 900/4 and ../6 as well as Ø 1000 mm have adjustable blades at standstill. This enables the fan to provide the exact duty required. The pitch angle is factory set (must be stated when ordering). The motors are selected using their maximum performance (see table on product page). The maximum pitch angle shown must not be exceeded as the motor will be overloaded.

Air flow direction


All fans (except HRF and AVD RK) come with the air flow direction

A = pulling air over the motor as standard. Air flow direction B = pushing air over the motor is available for most models with an additional charge. HRF and AVD RK come with air

- flow direction B as standard.
 The air flow direction can be changed after supply, should it be required, for most AC highperformance axial fans. To do so you have to:
- 1. Change the direction of rotation of the motor by changing the terminals on the terminal board.
- Remove impeller and put it the opposite way round on the shaft (possible up to Ø 500).
 Models HQ and HW allow for a 1/3 drop in performance.
- EC types can only be operated in the set standard direction of rotation.

Air flow direction B pushing air over the motor

Protection against contact

All relevant safety instructions and regulations must be followed when the fans are installed. A protection against accidental contact to VDE 0700 and/or DIN EN ISO 13857 must be guaranteed. The contact with rotating parts must be avoided. Make sure that there are no items near the inlet which could be pulled into the fan. Fans which are protected when installed (e.g. in ventilation ducting or closed aggregate) do not require a quard if the system provides sufficient safety. We emphasise that the installer is responsible for the safety of the installation by fitting appropriate protection devices. Suitable guards are available as accessories. The responsibility that all relevant regulations have been observed remains with the installer.

Position, installation, drainage holes

- Axial fans are suitable for installation in any position. If condensation is to be expected, (e.g. for intermitting operation, high humidity air flow or rapidly changing temperatures) the fan must be installed with the motor drainage holes facing downward and they must be open.
- ☐ If installed outdoors, or in wet conditions or if installed with the motor shaft facing vertically upwards, this must be stated when ordering. Please make sure that the fan is fixed securely and the casing is not squeezed or distorted.

Reverse operation

Most axial fans are reversible (see product page). Using a suitable reversing switch. The fan can be used for intake or extract. In abnormal direction of flow the capacity decreases by approx. 1/3.

EC types are not reversible as standard.

Air flow temperatures

The standard models are suitable for temperatures from -30 °C to +40 °C or +60 °C (AC or EC types). Apart from explosion proof fans, higher temperatures are possible for a short time. For permanently higher temperatures special models are available on request.

Motor protection

- For AC types; through thermal contacts in the windings
- standard for 1 ph. motors,mostly standard for 3 ph.
- motors (see product page).
- For EC types; integrated electronic temperature monitoring.
- Explosion protection

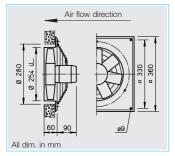
The ex-proof models conform to cluster II, category 2G for operation in zone 1 or 2. According to directive 2014/34/EU (ATEX), larger air gaps are specified which lead to a capacity reduction of up to 10%.

- Extra equipment,
- additional charge on demand Aluminium cast impeller
- Alternative voltage
- Alternative frequency
- Two pack coating for protection of external components against diluted acids and lime solutions
- Alternative air flow direction
 Extra equipment for higher air
- flow temperatures
 Pressure-tight encapsulated
- motors (standard for 1 ph. exproof types)
- Anti vibration insulation To avoid vibration transmission to building and ducting the use of anti vibration mounts (accessory SDD, SDZ) is highly recommended. Larger frame size motors may protrude out of the casing and might move the centre of gravity within the fan. To avoid an uneven load on the anti vibration mounts, an extension duct is recommended (accessory VR).

Helios

By combining the parameters of static pressure increase Δp_{ta} , air flow volume V, speed min⁻¹, sound pressure level dB(A) and impeller diameter DN mm, the following table facilitates the selection of EC high-performance

axial fans Ø 250 to 500 mm and high-performance axial fans Ø 200 to 1000 mm.


{-PA} dB(A)	(ΛP{f_0}) in	-	ir flow volume Vm ³ /h depending on static pressure														
		P _{fa}) in Pa															
in 4 m	0	10	20	30	40	50	60	80	100	120	140	160	200	250	300	350	400
56	1930	1880	1820	1760	1700	1630	1550	1370	1070								
52	3110	3000	2880	2760	2640	2520	2400	2090	1680								
50	3220	3050	2870	2700	2520	2330	2090										
59	4200	4150	4090	4020	3960	3890	3820	3690	3540	3360	3100	2790					
59	4790	4690	4610	4540	4460	4390	4310	4140	3920	3640	3240						
65	5850	5800	5760	5700	5640	5560	5490	5360	5210	5080	4870	4730	4030				
55	5460	5350	5250	5140	5030	4910	4790	4520	4200	3730							
64	7640	7580	7510	7450	7390	7330	7260	7070	6880	6680	6490	6200	5530				
54	6320	6190	6050	5900	5750	5590	5420	5010	4460								
62	8300	8230	8150	8070	7970	7880	7790	7490	7300	6910	6530	6140					
	56 52 50 59 59 65 55 64 54	56 1930 52 3110 50 3220 59 4200 59 4790 65 5850 55 5460 64 7640 54 6320	56 1930 1880 52 3110 3000 50 3220 3050 59 4200 4150 59 4790 4690 65 5850 5800 55 5460 5350 64 7640 7580	56 1930 1880 1820 52 3110 3000 2880 50 3220 3050 2870 59 4200 4150 4090 59 4790 4690 4610 65 5850 5800 5760 55 5460 5350 5250 64 7640 7580 7510 54 6320 6190 6050	56 1930 1880 1820 1760 52 3110 3000 2880 2760 50 3220 3050 2870 2700 59 4200 4150 4090 4020 59 4790 4690 4610 4540 65 5850 5800 5760 5700 55 5460 5350 5250 5140 64 7640 7580 7510 7450 54 6320 6190 6050 5900	56 1930 1880 1820 1760 1700 52 3110 3000 2880 2760 2640 50 3220 3050 2870 2700 2520 59 4200 4150 4090 4020 3960 59 4790 4690 4610 4540 4460 65 5850 5800 5760 5700 5640 55 5460 5350 5250 5140 5030 64 7640 7580 7510 7450 7390 54 6320 6190 6050 5900 5750	56 1930 1880 1820 1760 1700 1630 52 3110 3000 2880 2760 2640 2520 50 3220 3050 2870 2700 2520 2330 59 4200 4150 4090 4020 3960 3890 59 4790 4690 4610 4540 4460 4390 65 5850 5800 5760 5700 5640 5560 55 5460 5350 5250 5140 5030 4910 64 7640 7580 7510 7450 7390 7330 54 6320 6190 6050 5900 5750 5550	56 1930 1880 1820 1760 1700 1630 1550 52 3110 3000 2880 2760 2640 2520 2400 50 3220 3050 2870 2700 2520 2330 2090 59 4200 4150 4090 4020 3960 3890 3820 59 4790 4690 4610 4540 4460 4390 4310 65 5850 5800 5760 5700 5640 5490 55 5460 5350 5250 5140 5030 4910 4790 64 7640 7580 7510 7450 7390 7330 7260 544 6320 6190 6050 5900 5750 5690 5490	56 1930 1880 1820 1760 1700 1630 1550 1370 52 3110 3000 2880 2760 2640 2520 2400 2090 50 3220 3050 2870 2700 2520 2330 2090 59 4200 4150 4090 4020 3960 3820 3690 59 4790 4690 4610 4540 4460 4390 4310 4140 65 5850 5800 5700 5700 5640 5560 5490 5360 55 5460 5350 5250 5140 5030 4910 4790 4520 64 7640 7580 7510 7450 7390 7300 7260 7070 544 6320 6190 6050 5900 5750 5590 5420 5010	56 1930 1880 1820 1760 1700 1630 1550 1370 1070 52 3110 3000 2880 2760 2640 2520 2400 2090 1680 50 3220 3050 2870 2700 2520 2330 2090 - 59 4200 4150 4090 4020 3960 3890 3820 3690 3540 59 4790 4690 4610 4540 4460 4390 4310 4140 3920 65 5850 5800 5760 5700 5640 5560 5490 5200 4200 4200 4200 55 5460 5350 5250 5140 5030 4910 4790 4520 4200 55 5460 5350 5250 5140 5030 4910 4790 4520 4200 64 7640 7580 7510 7450	56 1930 1880 1820 1760 1700 1630 1550 1370 1070 52 3110 3000 2880 2760 2640 2520 2400 2090 1680 1 50 3220 3050 2870 2700 2520 2330 2090 1 6 59 4200 4150 4090 4020 3960 3890 3820 3690 3540 3360 59 4790 4690 4610 4540 4390 4310 4140 3920 3640 55 5860 5800 5760 5640 5560 5400 5210 5030 55 5460 5350 5250 5140 5030 4910 4790 4200 3730 64 7640 7580 7510 7450 7390 7330 7260 7070 6880 6680 544 6320 6190 6050 5900<	56193018801820176017001630155013701070 $\left \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array}$ 52311030002880276026402520240020901680 $\left \begin{array}{c} \end{array} \\ \end{array} \\ \end{array}$ 503220305028702700252023302090 $\left \begin{array}{c} \end{array} \\ \end{array} \\ \end{array}$ 36003800360036003600310059420041504090402039603820362036903500364032405947904690461045404460439043104140392036403240655850580057605700564055605490536052105080487055546053505250514050304910479045204200373064764075807510745073907330726070706880668064905463206190605059005750559054205010446011 <t< th=""><th>56$1930$$1880$$1820$$1760$$1700$$1630$$1550$$1370$$1070$</th><th>56193018801820176017001630155013701070$\left 1630$16701070$\left 1630$13701070$\left 1630$16701</th><th>56$1930$$1880$$1820$$1760$$1700$$1630$$1550$$1370$$1070$</th><th>56$1930$$1880$$1820$$1760$$1700$$1630$$1550$$1370$$1070$$160$</th><th>56$1930$$1880$$1820$$1760$$1700$$1630$$1550$$1370$$1070$$160$</th></t<>	56 1930 1880 1820 1760 1700 1630 1550 1370 1070	56193018801820176017001630155013701070 $\left 1630$ 16701070 $\left 1630$ 13701070 $\left 1630$ 16701	56 1930 1880 1820 1760 1700 1630 1550 1370 1070	56 1930 1880 1820 1760 1700 1630 1550 1370 1070 160	56 1930 1880 1820 1760 1700 1630 1550 1370 1070 160

Diameter	R.P.M.	Sound press. Intake	Air flow	volume V	m ³ /h dep	ending on	static pre	ssure											
mm	min-1	L _{PA} dB(A)	(ΔP_{fa}) in	Pa															
		in 4 m	0	10	20	30	40	50	60	80	100	120	140	160	200	250	300	350	400
200	2300	55	910	860	810	760	710	490	420	330	220								
200	1360	42	520	410	210	170													
250	2800	53	2070	2040	2010	1970	1940	1910	1870	1800	1710	1610	1480						
250	1450	44	930	840	730														
250	950	31	660	570															
315	2800	69	4090	4050	4020	3990	3950	3920	3880	3790	3700	3610	3500	3380	3090				
315	1450	51	2090	2010	1930	1840	1740	1620	1410										
315	950	38	1330	1220	1070														
315	725	30	980	780															
355	2800	71	5710	5670	5620	5580	5530	5480	5430	5330	5220	5110	4990	4860	4550	4020			
355	1450	51	2850	2770	2670	2570	2450	2320	2160										
355	950	42	1940	1830	1690	1500	1060												
355	725	34	1430	1240	880														
400	2800	71	8410	8360	8310	8270	8220	8170	8130	8030	7940	7840	7750	7650	7440	7160	6840	6440	5820
400	1450	56	4010	3920	3810	3700	3580	3440	3300	2970									
400	950	45	2570	2410	2230	2020													
400	725	37	2010	1810	1530														
450	2800	78	11050	10960	10870	10770	10680	10590	10500	10310	10130	9950	9770	9580	9210	8690	8050	6930	4520
450	1450	58	5770	5680	5590	5500	5390	5280	5160	4870	4510	4010							
450	950	47	3890	3720	3550	3360	3150	2890											
450	725	51	2860	2680	2450	2120													
500	2800	81	13150	13040	12930	12820	12720	12610	12500	12290	12070	11860	11660	11440	11010	10380	9600	8620	5390
500	1450	65	8320	8220	8110	8000	7880	7760	7630	7370	7080	6760	6400	5970					
500	950	51	5500	5330	5140	4950	4740	4510	4240	3450									
500	725	44	3890	3690	3440	3150	2750												
560	1450	62	12910	12680	12550	12360	12140	11950	11770	11320	10900	10550	10000	9500	8270				
560	950	52	8100	7680	7370	7080	6680	6280	5830	4570									
560	725	46	6450	6070	5640	5230	4750	4140											
630	1450	65	17870	17650	17420	17200	16970	16750	16520	16010	15500	15000	14500	14000	13000	11300			
630	950	55	10520	10150	9780	9410	9040	8670	8220	7260									
630	725	49	8000	7580	7010	6530	5910	5300											
710	1450	71	23740	23490	23240	22980	22730	22470	22200	21660	21090	20500	19900	19290	18010	16240	14000	11060	
710	935	61	15250	14860	14450	14040	13590	13140	12600	11690	10610	9280	7440						
710	700	54	11350	10810	10250	9630	8990	8300	7500	5340									
800	1435	73	32350	32040	31720	31400	31090	30770	30490	29860	29230	28610	27990	27330	25940	24020	22080		
800	945	62	20720	20280	19830	19350	18850	18290	17710	16530	15330	13840	10740						
800	705	55	15380	14780	14120	13380	12580	11790	10900										
900	1435	76	46060	45700	45390	45030	44670	44310	44000	43280	42600	41880	41170	40800	39060	37110	34940	32800	30340
900	950	66	30500	30100	29500	29100	28500	27900	27400	26300	25100	23910	22710	21310					
900	725	59	21160	20410	19640	18850	18010	17120	16130	15000									
1000	1440	80	63420	63030	62650	62260	61870	61490	61110	60330	59560	58790	58010	57240	55700	53710	51590	49260	46830
1000	950	69	41740	41150	40570	39990	39400	38810	38230	37060	35870	34610	33260	31810	28880				
1000	725	62	31760	30990	30220	29460	28690	27930	27130	25410	23500	21540							

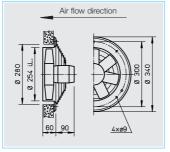
HQ EC

Specification for all types Casing

Manufactured in galvanised sheet steel. Models HQ and HW have the additional protection of two coats of papyrus white.

Impeller

Highly efficient with profiled polymer blades, aerodynamically optmised for application, dynamically balanced. Operating range from -30 to +60 °C.


Motor

Energy-saving, speed-controllable EC external rotor motor protected to IP 44 with high level of efficiency. Maintenance-free and interference-free, excellent electromagnetic compatibility (EMC), ball bearing mounted.

Motor protection

Integrated electronic temperature monitoring for EC motor and electronics.

Electrical connection

Standard terminal box (protection to IP 54) mounted to running cable and on the outside of the ducting for HRF.

Guard

Made from powder-coated steel for HQ and HW, in accordance with DIN EN ISO 13857.

Speed control

All types are steplessly controllable through the speed-potentiometer. Furthermore, control is also possible via three-step switch or steplessly via universal control system or electronic differential pressure/temperature controller. See table below. the example performance stages are shown in the characteristic curves.

Installation

300

Installation in any position.

Air flow direction

Sound levels

Ŀ

253

0

HRF EC

Sum levels and spectrum figures for sound power and sound pressure levels in 4 m free field conditions are specified above the characteristic curve for a medium intake/exhaust operating point. The sound pressure sum level in 4 m (free field conditions) is also shown in the table below and the table below the characteristic curve for different voltages. Sound emissions and room acoustics see page 10.

Туре

Ref. no

HW EC

guard

6.5 HQW EC 250 A 4822 HWW EC 250 A 4823 HRFW EC 250 A 4824

HRF EC

Ref. no.

R.P.M.

min⁻¹

2650

Air flow

volume

(FID)

₿ m³/h

1930

Motor

power

kW

0.13

1 ph. motor, 1~ 230 Volt, 50/60 Hz, EC motor, protection to IP 44

Current

А

0.97

Sound

pressure

dB(A) in 4 m

56

Wiring

diagram

No.

1046

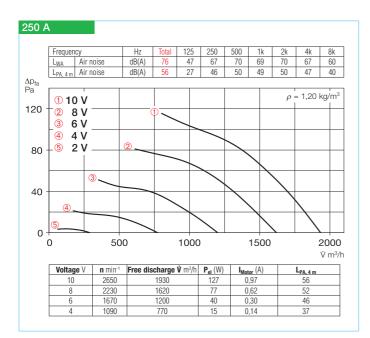
max. air flow

temperature

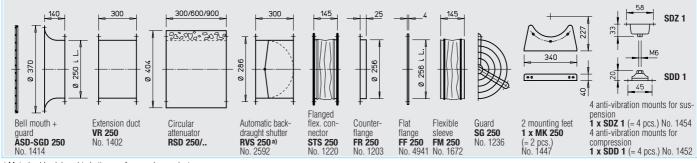
+°C

40

Weight


net

approx


HQ EC

incl. guard Ref. no.

Accessories for HRF EC Description see page 231 on

a) Motorised backdraught shutter see Accessories product pages

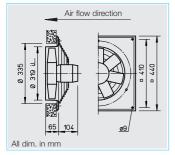
Information	Page
Techn. description	140
Selection chart	141
Information for planning	10 on

Made to order designs

Alternative voltages, protection classes, air flow direction, air flow temperature, acid protection and cast aluminium impellers are available on request.

Note the technical information on page 15 on.

Other accessories	Page
Filters and attenuators	421 on
Backdraught shutters	
and grilles	487 on
Universal control system,	
electronic controller,	
speed-potentiometer	539 on


Universal control system							hree-step s	speed switch surfa	ce	Electronic d controlle	iff. pressure r/switch	Electronic temperature controller/switch		
Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	
EUR EC ¹⁾	1347	PU 10 ¹⁾	1734	PA 10 ¹⁾	1735	SU-3 10 ¹⁾	4266	SA-3 10 ¹	4267	EDR ¹⁾	1437	ETR ¹⁾	1438	

1) Several EC fans can normally be connected, see Accessories

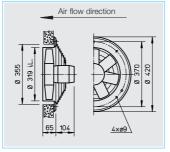
HQ EC

Specification for all types Casing

Manufactured in galvanised sheet steel. Models HQ and HW have the additional protection of two coats of papyrus white.

Impeller

Highly efficient with profiled polymer blades, aerodynamically optmised for application, dynamically balanced. Operating range from -30 to +60 °C.


Motor

Energy-saving, speed-controllable EC external rotor motor protected to IP 44 with high level of efficiency. Maintenance-free and interference-free, excellent electromagnetic compatibility (EMC), ball bearing mounted.

Motor protection

Integrated electronic temperature monitoring for EC motor and electronics.

Electrical connection

Standard terminal box (protection to IP 54) mounted to running cable and on the outside of the ducting for HRF.

Guard

Made from powder-coated steel for HQ and HW, in accordance with DIN EN ISO 13857.

Speed control

All types are steplessly controllable through the speed-potentiometer. Furthermore, control is also possible via three-step switch or steplessly via universal control system or electronic differential pressure/temperature controller. See table below. the example performance stages are shown in the characteristic curves.

Installation

300

Installation in any position.

08.

Air flow direction

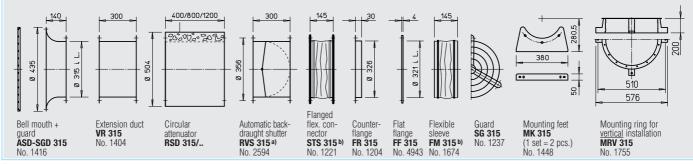
Sound levels

318

0

HRF EC

Sum levels and spectrum figures for sound power and sound pressure levels in 4 m free field conditions are specified above the characteristic curve for a medium intake/exhaust operating point. The sound pressure sum level in 4 m (free field conditions) is also shown in the table below and the table below the characteristic curve for different voltages. Sound emissions and room acoustics see page 10.



R.P.M.	Air flow	Motor	Current	Sound	Wiring	max. air flow			Туре					
	volume (FID)	power		pressure	diagram	temperature	net approx.	HQ EC incl.	Ref. no.		Ref. no	HRF EC	Ref. no.	
min ⁻¹	V m³∕h	kW	А	dB(A) in 4 m	No.	+°C	kg	guard		incl. guard				
1 ph. mot	tor, 1~ 230 V	olt, 50/60 H	lz, EC mot	or, protection	to IP 44									
2040	3110	0.19	1.50	52	1046	40	8.0	HQW EC 315 A	4880	HWW EC 315 A	4881	HRFW EC 315	A 4882	

Accessories for HRF EC Description see page 231 on

a) Motorised backdraught shutter see Accessories product pages

Information	Page
Techn. description	140
Selection chart	141
Information for planning	10 on

Made to order designs

Alternative voltages, protection classes, air flow direction, air flow temperature, acid protection and cast aluminium impellers are available on request.

Note the technical information on page 15 on.

Other accessories	Page
Filters and attenuators	421 on
Backdraught shutters	
and grilles	487 on
Universal control system,	
electronic controller,	
speed-potentiometer	539 on

EC Axial fans

Universal control system							hree-step s	speed switch surfac	e	Electronic di controlle		Electronic temperature controller/switch		
Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	
EUR EC ¹⁾	1347	PU 10 ¹⁾	1734	PA 10 ¹⁾	1735	SU-3 10 ¹⁾	4266	SA-3 10 ¹⁾	4267	EDR ¹⁾	1437	ETR ¹⁾	1438	

1) Several EC fans can normally be connected, see Accessories

HQ EC

Specification for all types Casing

Manufactured in galvanised sheet steel. Models HQ and HW have the additional protection of two coats of papyrus white.

Impeller

Highly efficient with profiled polymer blades, aerodynamically optmised for application, dynamically balanced. Operating range from -30 to +60 °C.

Motor

Energy-saving, speed-controllable EC external rotor motor protected to IP 44 (type A), IP 54 (Type B) with high level of efficiency. Maintenance-free and interference-free, excellent electromagnetic compatibility (EMC), ball bearing mounted.

Motor protection

Integrated electronic temperature monitoring for EC motor and electronics.

Electrical connection

Standard terminal box (protection to IP 54) For HQ and HW types mounted to running cable ("A") or on the back of the motor ("B"). For HRF types on the outside of the ducting.

Guard

Made from powder-coated steel for HQ and HW, in accordance with DIN EN ISO 13857.

Speed control

Wiring

diagram

No.

1046

1047

max. air flow

temperature

+°C

40

40

Weight

net

approx

kg

9.0

HQ EC

incl. guard Ref. no.

All types are steplessly controllable through the speed-potentiometer. Furthermore, control is also possible via three-step switch or steplessly via universal control system or electronic differential pressure/temperature controller. See table below. the example performance stages are shown in the characteristic curves.

Installation

300

Installation in any position.

0 8.9

Air flow direction

Sound levels

Ø 358

HRF EC

Sum levels and spectrum figures for sound power and sound pressure levels in 4 m free field conditions are specified above the characteristic curve for a medium intake/exhaust operating point. The sound pressure sum level in 4 m (free field conditions) is also shown in the table below and the table below the characteristic curve for different voltages. Sound emissions and room acoustics see page 10.

Туре

HQW EC 355 A 4916 HWW EC 355 A 4917 HRFW EC 355 A 4918

HW EC

guard

12.0 HQW EC 355 B 4919 HWW EC 355 B 4920 HRFW EC 355 B 4921

Ref. no.

HRF EC

Ref. no.

R.P.M.

min⁻¹

1500

1980

Air flow

volume

(FID)

₿ m³/h

3220

4200

Motor

power

kW

0.32

1 ph. motor, 1~ 230 Volt, 50/60 Hz, EC motor, protection to IP 44

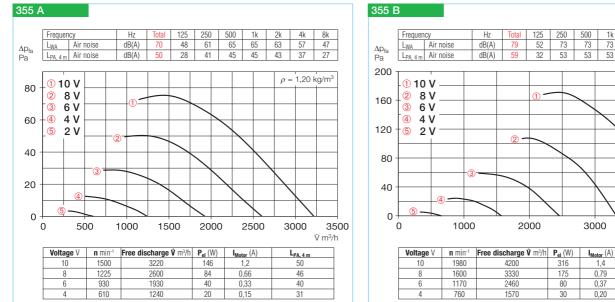
0.15 1.20

Current

А

1.40

Sound


pressure

dB(A) in 4 m

50

59

0,20

1k 73 53 2k 73 53 8k 59

4k

67

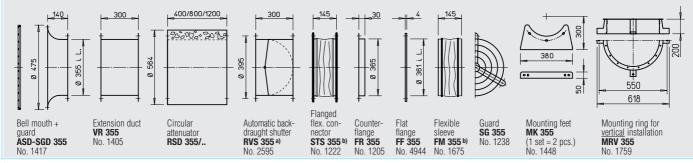
47 39

 $\rho = 1,20 \text{ kg/m}^3$

4000

L_{PA,4m}

59


54

48

39

Vm³/h

Accessories for HRF EC Description see page 231 on

a) Motorised backdraught shutter see Accessories product pages

Information	Page
Techn. description	140
Selection chart	141
Information for planning	10 on

Made to order designs

Alternative voltages, protection classes, air flow direction, air flow temperature, acid protection and cast aluminium impellers are available on request.

Note the technical information on page 15 on.

Other accessories	Page
Filters and attenuators	421 on
Backdraught shutters	
and grilles	487 on
Universal control system,	
electronic controller,	
speed-potentiometer	539 on

Universal control system					ace	T flush	hree-step s	peed switch surfac	е	Electronic di controlle		Electronic temperature controller/switch	
Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.
EUR EC ¹⁾	1347	PU 10 ¹⁾	1734	PA 10 ¹⁾	1735	SU-3 10 ¹⁾	4266	SA-3 10 ¹⁾	4267	EDR ¹⁾	1437	ETR ¹⁾	1438
EUR EC ¹⁾	1347	PU 10 ¹⁾	1734	PA 10 ¹⁾	1735	SU-3 10 ¹⁾	4266	SA-3 10 ¹⁾	4267	EDR ¹⁾	1437	ETR ¹⁾	1438

1) Several EC fans can normally be connected, see Accessories

Sav

with speed control

HQ EC

Specification for all types Casing

Manufactured in galvanised sheet steel. Models HQ and HW have the additional protection of two coats of papyrus white.

Impeller

Highly efficient with profiled polymer blades, aerodynamically optmised for application, dynamically balanced. Operating range from -30 to +60 °C.

Motor

Energy-saving, speed-controllable EC external rotor motor protected to IP 54 with high level of efficiency. Maintenance-free and interference-free, excellent electromagnetic compatibility (EMC), ball bearing mounted.

Motor protection

Integrated electronic temperature monitoring for EC motor and electronics.

Electrical connection

Standard terminal box (protection to IP 54) For HQ and HW types mounted to running cable ("A") or on the back of the motor ("B"). For HRF types on the outside of the ducting.

Guard

Made from powder-coated steel for HQ and HW, in accordance with DIN EN ISO 13857.

Speed control

All types are steplessly controllable through the speed-potentiometer. Furthermore, control is also possible via three-step switch or steplessly via universal control system or electronic differential pressure/temperature controller. See table below. the example performance stages are shown in the characteristic curves. Installation

330

Installation in any position.

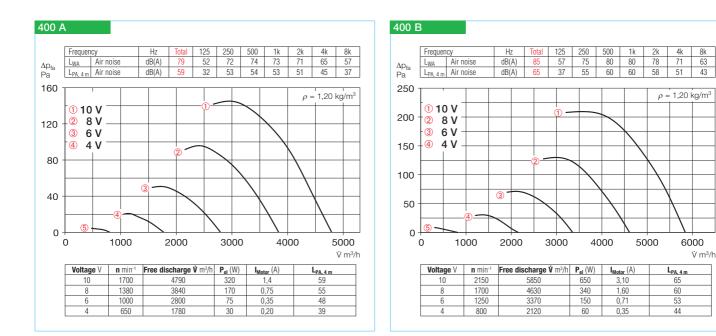
0 8.9

Air flow direction

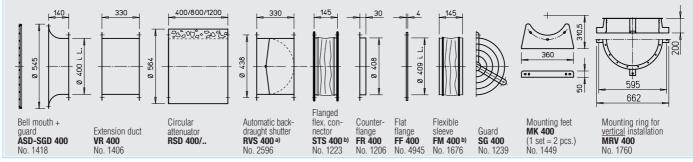
Sound levels

Ŀ

404


0

HRF EC


Sum levels and spectrum figures for sound power and sound pressure levels in 4 m free field conditions are specified above the characteristic curve for a medium intake/exhaust operating point. The sound pressure sum level in 4 m (free field conditions) is also shown in the table below and the table below the characteristic curve for different voltages. Sound emissions and room acoustics see page 10.

Accessories for HRF EC Description see page 231 on

a) Motorised backdraught shutter see Accessories product pages

Page
140
141
10 on

Made to order designs

Alternative voltages, protection classes, air flow direction, air flow temperature, acid protection and cast aluminium impellers are available on request.

Note the technical information on page 15 on.

Other accessories	Page
Filters and attenuators	421 on
Backdraught shutters	
and grilles	487 on
Universal control system,	
electronic controller,	500
speed-potentiometer	539 on

Universal control system						Three-step speed switch flush surface				Electronic di controlle	iff. pressure r/switch	Electronic temperature controller/switch		
Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	
EUR EC ¹⁾	1347	PU 10 ¹⁾	1734	PA 10 ¹⁾	1735	SU-3 10 ¹⁾	4266	SA-3 10 ¹⁾	4267	EDR ¹⁾	1437	ETR ¹⁾	1438	
EUR EC ¹⁾	1347	PU 10 ¹⁾	1734	PA 10 ¹⁾	1735	SU-3 10 ¹⁾	4266	SA-3 10 ¹⁾	4267	EDR ¹⁾	1437	ETR ¹⁾	1438	

1) Several EC fans can normally be connected, see Accessories

EC Axial fans

Sav

with speed control

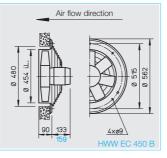
HQ EC

Specification for all types Casing

Manufactured in galvanised sheet steel. Models HQ and HW have the additional protection of two coats of papyrus white.

Impeller

Highly efficient with profiled polymer blades, aerodynamically optmised for application, dynamically balanced. Operating range from -30 to +60 °C.


Motor

Energy-saving, speed-controllable EC external rotor motor protected to IP 54 with high level of efficiency. Maintenance-free and interference-free, excellent electromagnetic compatibility (EMC), ball bearing mounted.

Motor protection

Integrated electronic temperature monitoring for EC motor and electronics.

Electrical connection

Standard terminal box (protection to IP 54) For HQ and HW types mounted to running cable ("A") or on the back of the motor ("B"). For HRF types on the outside of the ducting.

Guard

Made from powder-coated steel for HQ and HW, in accordance with DIN EN ISO 13857.

Speed control

All types are steplessly controllable through the speed-potentiometer. Furthermore, control is also possible via three-step switch or steplessly via universal control system or electronic differential pressure/temperature controller. See table below. the example performance stages are shown in the characteristic curves. Installation

330

Installation in any position.

0 8.9

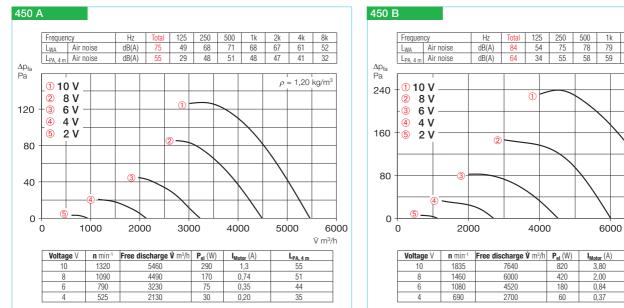
Air flow direction

Sound levels

Ŀ

454

0


HRF EC

Sum levels and spectrum figures for sound power and sound pressure levels in 4 m free field conditions are specified above the characteristic curve for a medium intake/exhaust operating point. The sound pressure sum level in 4 m (free field conditions) is also shown in the table below and the table below the characteristic curve for different voltages. Sound emissions and room acoustics see page 10.

0,84 53 0,37 43

2k 78 58 8k 67

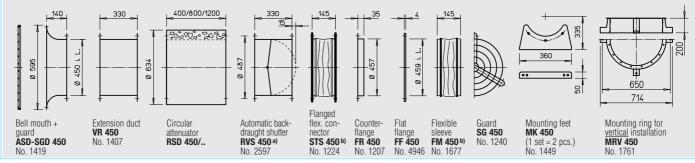
47

8000

V≀m³/h

EC Axial fans

L_{PA,4m}


64

59

4k 73 53

ho = 1,20 kg/m³

Accessories for HRF EC Description see page 231 on

a) Motorised backdraught shutter see Accessories product pages

Information	Page
Techn. description	140
Selection chart	141
Information for planning	10 on

Made to order designs

Alternative voltages, protection classes, air flow direction, air flow temperature, acid protection and cast aluminium impellers are available on request.

Note the technical information on page 15 on.

Other accessories	Page
Filters and attenuators	421 on
Backdraught shutters	
and grilles	487 on
Universal control system,	
electronic controller,	
speed-potentiometer	539 on

Universal control system					ace	Three-step speed switch flush surface				Electronic di controlle	iff. pressure r/switch	Electronic temperature controller/switch		
Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	
EUR EC ¹⁾	1347	PU 10 ¹⁾	1734	PA 10 ¹⁾	1735	SU-3 10 ¹⁾	4266	SA-3 10 ¹⁾	4267	EDR ¹⁾	1437	ETR ¹⁾	1438	
EUR EC ¹⁾	1347	PU 10 ¹⁾	1734	PA 10 ¹⁾	1735	SU-3 10 ¹⁾	4266	SA-3 10 ¹⁾	4267	EDR ¹⁾	1437	ETR ¹⁾	1438	

1) Several EC fans can normally be connected, see Accessories

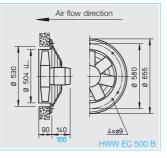
HQ EC

Specification for all types Casing

Manufactured in galvanised sheet steel. Models HQ and HW have the additional protection of two coats of papyrus white.

Impeller

Highly efficient with profiled polymer blades, aerodynamically optmised for application, dynamically balanced. Operating range from -30 to +60 °C.


Motor

Energy-saving, speed-controllable EC external rotor motor protected to IP 54 with high level of efficiency. Maintenance-free and interference-free, excellent electromagnetic compatibility (EMC), ball bearing mounted.

Motor protection

Integrated electronic temperature monitoring for EC motor and electronics.

Electrical connection

Standard terminal box (protection to IP 54) For HQ and HW types mounted to running cable ("A") or on the back of the motor ("B"). For HRF types on the outside of the ducting.

Guard

Made from powder-coated steel for HQ and HW, in accordance with DIN EN ISO 13857.

Speed control

Wiring

diagram

No.

1047

1048

max. air flow

temperature

+°C

40

40

Weight

net

approx

kg

HQ EC

incl. guard Ref. no.

Sound

pressure

dB(A) in 4 m

54

62

All types are steplessly controllable through the speed-potentiometer. Furthermore, control is also possible via three-step switch or steplessly via universal control system or electronic differential pressure/temperature controller. See table below. the example performance stages are shown in the characteristic curves.

Installation

330

Installation in any position.

0 8.9

Air flow direction

Sound levels

Ŀ.

504

0

HRF EC

Sum levels and spectrum figures for sound power and sound pressure levels in 4 m free field conditions are specified above the characteristic curve for a medium intake/exhaust operating point. The sound pressure sum level in 4 m (free field conditions) is also shown in the table below and the table below the characteristic curve for different voltages. Sound emissions and room acoustics see page 10.

Туре

HW EC

guard

15.7 HQW EC 500 A 4934 HWW EC 500 A 4935 HRFW EC 500 A 4936

17.7 HQW EC 500 B 4937 HWW EC 500 B 4938 HRFW EC 500 B 4939

Ref. no.

HRF EC

Ref. no.

R.P.M.

min⁻¹

1090

1450

Air flow

volume

(FID)

₿ m³/h

6320

8300

Motor

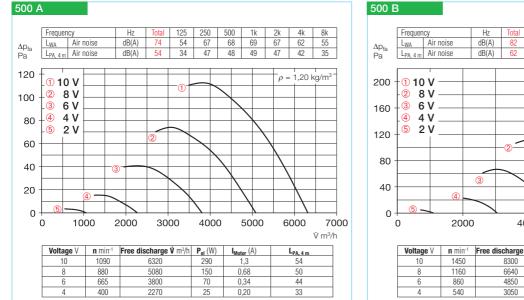
power

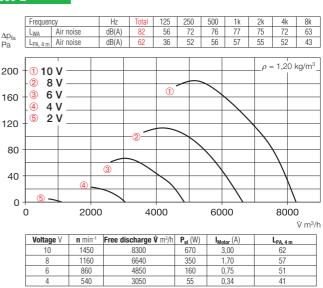
kW

0.29

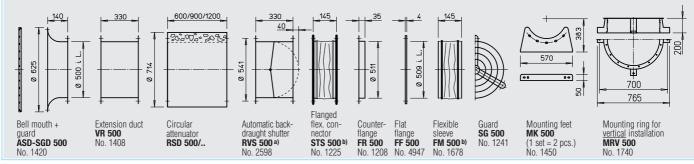
0.67

1 ph. motor, 1~ 230 Volt, 50/60 Hz, EC motor, protection to IP 54


Current


А

1.30


3.00

Accessories for HRF EC Description see page 231 on

a) Motorised backdraught shutter see Accessories product pages

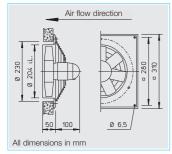
Information	Page
Techn. description	140
Selection chart	141
Information for planning	10 on

Made to order designs

Alternative voltages, protection classes, air flow direction, air flow temperature, acid protection and cast aluminium impellers are available on request.

Note the technical information on page 15 on.

Other accessories	Page
Filters and attenuators	421 on
Backdraught shutters	
and grilles	487 on
Universal control system,	
electronic controller,	
speed-potentiometer	539 on


EC Axial fans

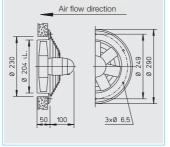
	Universal control system							ace	T flush	hree-step s	peed switch surfac	e	Electronic di controlle		Electronic temperature controller/switch		
	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.	Туре	Ref. no.			
	EUR EC ¹⁾	1347	PU 10 ¹⁾	1734	PA 10 ¹⁾	1735	SU-3 10 ¹⁾	4266	SA-3 10 ¹⁾	4267	EDR ¹⁾	1437	ETR ¹⁾	1438			
	EUR EC ¹⁾	1347	PU 10 ¹⁾	1734	PA 10 ¹⁾	1735	SU-3 10 ¹⁾	4266	SA-3 10 ¹⁾	4267	EDR ¹⁾	1437	ETR ¹⁾	1438			

1) Several EC fans can normally be connected, see Accessories

HQ

Specification for all models Casing

Manufactured in galvanised sheet steel. Model HQ and HW have an additional two-layer finishing in papyrus white.


Impeller

Highly efficient, profiled blade impeller, dynamically balanced and manufactured from impact resistant polymers. Suitable for -30 to +60 °C.

Motor

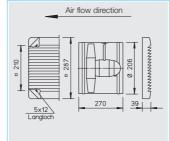
Totally enclosed motor with a die-cast aluminium casing, protected to IP 54. Ball bearing mounted. Maintenance-free and interference-free. Humidity protection of windings. For maximum air flow temperature see table below.

Motor protection

All models have automatically resetting thermal contacts wired in series with the motor wind-ings.

Electrical connection

Terminal box (IP 54) mounted on rear of motor as standard. Also on outside of piping for HRF.


Guard

Powder-coated steel wire for HQ (Ex-models galvanised) according to DIN EN ISO 13857.

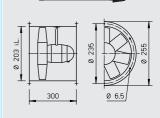
Speed control

All models are speed controllable by voltage reduction (transformer controller or electronic controller) For according air flow volume see performance curve.

Reversed operation

All models are reversible when wired to a DSEL reversing switch. For reverse air flow direction allow for 1/3 drop in performance.

Installation


Installation in any position. Ensure that the motor drainage holes face downwards.

Sound levels

See characteristic curve. The sound power and sound pressure are specified at 1 m distances under free field conditions, for average operating point suction/pressure side. See page 10 on for sound emission and acoustics.

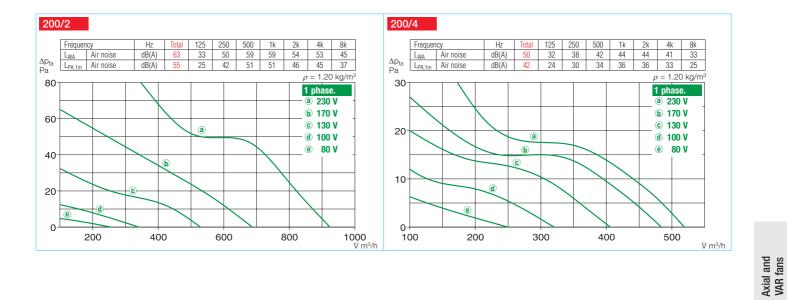
Air flow direction

Information

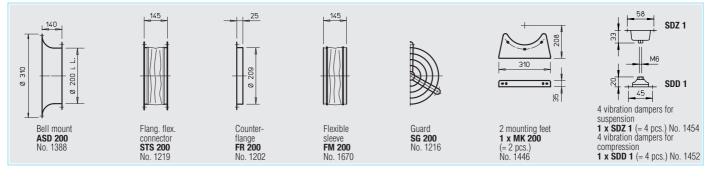
Techn. description	140
Selection chart	141
Information for planning	10 on

Page

Made to order designs

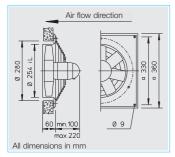

Alternative voltages, protection classes, air flow direction, air flow temperature, acid protection and cast aluminium impellers are available on request.

Note the technical information on page 15 on.


R.P.M.	Air flow	Motor Current* Wiring max. air flow temp.				Weight				Mo	del					
	volume (FID)	power	standard- supply	max. controlled	diagram	standard supply	speed controlled	net	HQ incl.	Ref. no.	HW incl.	Ref. no.	HS incl.	Ref. no.	HRF	Ref. no.
min ⁻¹	V m³∕h	W	А	А	No.	+°C	+°C	kg	guard		guard		guard			
1 Phase r	notor, 230 V	olt / 50 Hz,	capacitor	motor, pro	tection to	IP 54										
1360	520	25	0.11	0.11	439 ¹⁾	60	40	3.8	HQW 200/4	7537	HWW 200/4	7538	HSW 200/4	7502	HRFW 200/4 ¹⁾	7540
2250	930	66	0.26	0.31	439 ¹⁾	40	40	2.7	HQW 200/2	0960	—	_	HSW 200/2	7503	HRFW 200/2 ¹⁾	0199

1) Type HRFW: connect pursuant to wiring diagram no. SS-962.

Accessories for HRF Description see page 230 on

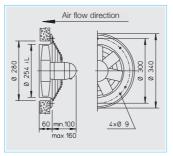

Transformer for 5 s		Electronic c steple flush/s	ess	Reversing	g switch	Electronic with revers	
Model	Ref. no.	Model	Ref. no.	Model	Ref. no.	Model	Ref. no.
TSW 0,3	3608	ESU 1/ESA 1	0236/0238	DSEL 2	1306	BSX	0240
TSW 0,3	3608	ESU 1/ESA 1	0236/0238	DSEL 2	1306	BSX	0240

Other accessories	Page
Extension tube for HS Type VH 200 Ref. no. Cylindrical duct, galvanised length: 150 mm.	
Shutters and grilles 4 Speed controllers	21 on 87 on

155

Specification for all models Casing

Manufactured in galvanised sheet steel. Model HQ and HW have an additional two-layer finishing in papyrus white. Exmodels without paint.

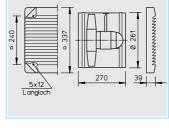

Impeller

Highly efficient, profiled blade impeller, dynamically balanced and manufactured from impact resistant polymers. Suitable for -30 to +60 °C. Deviation for exmodels.

Motor

Totally enclosed motor with a die-cast aluminium casing, protected to IP 55 or IP 54. Ball bearing mounted. Maintenancefree and interference-free. Humidity protection of windings. For maximum air flow temperature see table below. Deviation for ex-models.

Motor protection


All models (3~ explosion proof excluded) have thermal contacts as standard which must be connected to a motor protection unit (see below). The models H..W 250/6, H..W 250/4 and all 1 ph. ex-proof fans have automatic resetting thermal contacts wired in series with the motor windings.

Electrical connection

Terminal box (IP 54/55) mounted on rear of motor as standard. Also on outside of piping for HRF. Deviation for ex-models.

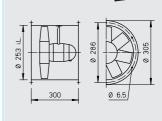
Guard

Powder-coated steel wire for HQ and HW (HQ ex-models galvanised) according to DIN EN ISO 13857.

Air flow direction

Speed control

HS


For all speed controllable models the current are identified with a value in the "speed controlled" column of the table below which must be used when selecting a controller. Possible allocations of frequency inverters are specified in the table below. The planned use of a frequency inverter without Sine filter must be stated when ordering. This requires a change of fan design and potential additional costs. The air flow rates are shown in the performance curves.

Reversed operation

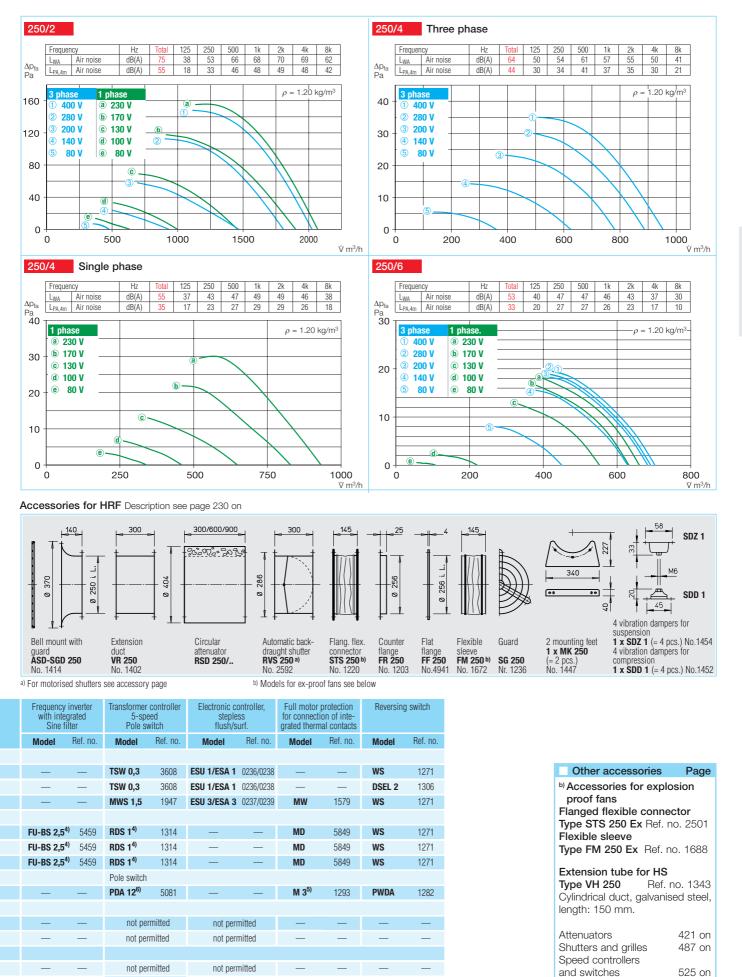
All models are reversible when wired to a reversing switch. For reverse air flow direction allow a loss in performance of approx. 1/3.

Installation

Installation in any position. Ensure that the motor drainage holes face downwards.

Dimensions

Pole-switch and explosion proof models may deviate from the information above.


Sound levels

See characteristic curve. The sound power and sound pressure are specified at 4 m distances under free field conditions, for average operating point suction/pressure side. See page 10 on for sound emission and acoustics. Deviation for exmodels.

Information	Page
Techn. description	140
Selection chart	141
Information for planning	10 on

R.P.M.	Air flow	Motor		rent*	Wiring	max. air f		Weight				Мо	del			
	volume (FID)	power	standard- supply	max. controlled	diagram	standard supply	speed controlled	net	HQ incl.	Ref. no.	HW incl.	Ref. no.	HS incl.	Ref. no.	HRF	Ref. no.
min ⁻¹	₿ m³/h	W	А	А	No.	+°C	+°C	kg	guard		guard		guard			
1 Phase n	notor, 230 Vo	olt / 50 Hz,	capacitor	motor, pro	tection to	IP 54/IP 5	5									
930	660	35	0.20	0.22	317	60	40	6.5	HQW 250/6	1102	—	—	HSW 250/6	0139	—	—
1300	930	36	0.15	0.15	439 ²⁾	60	40	7.5	HQW 250/4 ¹⁾	1103	HWW 250/4 ¹⁾	1001	HSW 250/4 ¹⁾	0140	HRFW 250/4 ¹⁾²	0200
2710	2070	187	0.81	0.9	317 ³⁾	60	40	6.5	HQW 250/2	1104	HWW 250/2	1002	HSW 250/2	0141	HRFW 250/2 ³⁾	0201
3 Phase n	notor, 400 Vo	olt / 50 Hz,	squirrel ca	age motor	protectio	n to IP 55										
980	700	61	0.27	0.33	469	60	40	6.5	HQD 250/6	1114	—	—	—	—	—	—
1390	950	55	0.15	0.15	469	60	40	6.5	HQD 250/4 ¹⁾	1115	HWD 250/4 ¹⁾	1016	HSD 250/4 ¹⁾	0155	HRFD 250/4 ¹⁾	0220
2550	2000	169	0.31	0.33	469	60	40	6.5	HQD 250/2	1116	HWD 250/2	1017	—	—	HRFD 250/2	0221
2 speed n	notor, pole-s	witching, D	Dahlander	windings,	400 Volt,	50 Hz, prot	ection to IP	55								
1430/2770	1030/2110	58/212	0.16	/0.43	472	60	—	8.5	HQD 250/4/2	1128	—	—	—	—	HRFD 250/4/2	0390
Explosion	proof Ex d	ll B, 1 ph.,	230 Volt, 9	50 Hz, prot	ection to	IP 55, temp	. class T1-T	13								
1400	1030	60*	0.	70*	757	40	—	12	HQW 250/4 Ex	0438	—	—	—	—	HRFW 250/4 Ex	0 437
2690	1950	180*	1.3	23*	757	40	_	13	HQW 250/2 Ex	1094	—	—	—	—	HRFW 250/2 Ex	(1095
Explosion	proof Ex e l	l, 3 ph., 40	0 Volt, 50	Hz, protect	ion to IP	55, temp. cl	ass T1-T3									
1350	1070	120*	0.3	37*	470	40	—	12	HQD 250/4 Ex	1144	—	—	—	—	HRFD 250/4 Ex	c 0470
2800	2070	250*	0.	75*	470	40	_	11	HQD 250/2 Ex	1145	—	_	—	—	HRFD 250/2 Ex	c 0471

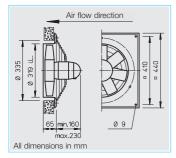
* Motor nominal values, Ex see info page 16. ¹⁾ Special design not possible. ²⁾ Type HRFW: connect using wiring diagram no. SS-962. ³⁾ Type HRFW../2: connect using wiring diagram no. SS-963.

Axial and VAR fans

4) Incl. full motor protection.

Helios

5) Incl. pole switch.


not permitted

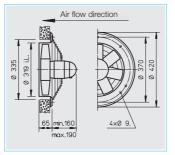
_

not permitted

 $^{\rm 6)}$ See switch product page for flush mounted version

Specification for all models Casing

Manufactured in galvanised sheet steel. Model HQ and HW have an additional two-layer finishing in papyrus white. Exmodels without paint.


Impeller

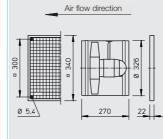
Highly efficient, profiled blade impeller, dynamically balanced and manufactured from impact resistant polymers. Suitable for -30 to +60 °C. Deviation for exmodels.

Motor

Totally enclosed motor with a die-cast aluminium casing, protected to IP 55. Ball bearing mounted. Maintenance-free and interference-free. Humidity protection of windings. For maximum air flow temp. see table below. Deviation for ex-models.

Motor protection

All models (3~ explosion proof excluded) have thermal contacts as standard which must be connected to a motor protection unit (see below). The models H..W 315/6 and all 1 ph. exproof fans have automatic resetting thermal contacts wired in series with the motor windings.

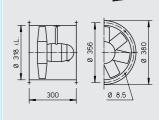

Electrical connection

Terminal box (IP 55) mounted on rear of motor as standard. Also on outside of piping for HRF. Deviation for ex-models.

Guard

Powder-coated steel wire for HQ and HW (HQ ex-models galvanised), polymer for HS according to DIN EN ISO 13857.

Speed control


For all speed controllable models the current are identified with a value in the "speed controlled" column of the table below which must be used when selecting a controller. Possible allocations of frequency inverters are specified in the table below. The planned use of a frequency inverter without Sine filter must be stated when ordering. This requires a change of fan design and potential additional costs. The air flow rates are shown in the performance curves.

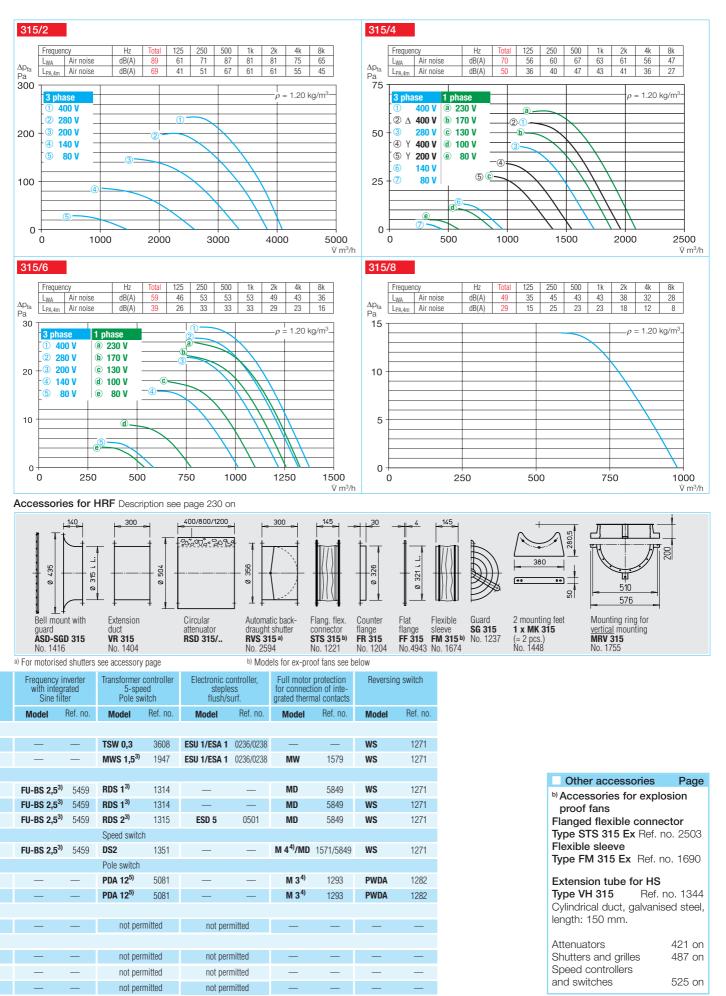
Reversed operation

All models are reversible when wired to a reversing switch. For reverse air flow direction allow a loss in performance of approx. 1/3.

Installation

Installation in any position. Ensure that the motor drainage holes face downwards.

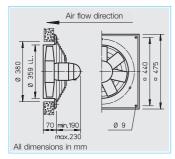
Dimensions


Pole-switch and explosion proof models may deviate from the information above.

Sound levels

See characteristic curve. The sound power and sound pressure are specified at 4 m distances under free field conditions, for average operating point suction/pressure side. See page 10 on for sound emission and acoustics. Deviation for ex-models.

R.P.M.	Air flow	Motor		rrent*	Wiring		low temp.	Weight				Мо	del				
	volume (FID)	power	standard- supply	max. controlled	diagram	standard supply	speed controlled	net	HQ	Ref. no.		Ref. no.		Ref. no.	HRF	Ref. no.	
min ⁻¹	V m³/h	W	A	А	No.	+°C	+°C	kg	incl. guard		incl. guard		incl. guard				
1 Phase n	notor, 230 V	olt / 50 Hz,	capacitor	motor, pro	tection to	IP 55											
920	1330	33	0.25	0.35	317 ¹⁾	60	40	9.0	HQW 315/6	1105	—	—	HSW 315/6	0142	HRFW 315/6 ¹⁾	0202	
1390	2080	104	0.45	0.47	475 ²⁾	60	40	8.0	HQW 315/4	1106	HWW 315/4	1004	HSW 315/4	0143	HRFW 315/4 ²⁾	0203	
3 Phase m	notor, 400 V	olt / 50 Hz,	squirrel c	age motor	protection	n to IP 55											
950	1370	68	0.27	0.32	469	60	40	9.0	HQD 315/6	1117	—	—	—	—	—	—	
1330	1960	84	0.24	0.26	469	60	40	9.0	HQD 315/4	1118	HWD 315/4	1019	HSD 315/4	0158	HRFD 315/4	0223	
2760	4080	527	1.10	1.23	469	50	40	11.0	HQD 315/2	1119	HWD 315/2	1020	—	—	HRFD 315/2	0224	
Two-spee	d, 3 ph., 400	V, 50 Hz, 1	$// \triangle$ switc	h, protecti	on to IP 5	5											
1040/1280	1530/1980	56/87	0.11	1/0.22	520	60	—	10.5	HQD 315/4/4	1460	—	—	_	—	HRFD 315/4/4	1462	
2 speed n	notor, pole-s	witching, I	Dahlander	windings,	400 Volt,	50 Hz, prot	ection to IP	55									
720/1445	980/2060	49/115	0.20	0/0.43	472	60	—	12.0	HQD 315/8/4	1129	—	—	HSD 315/8/4	0346	HRFD 315/8/4	0391	
1445/2845	2100/4190	106/558	0.45	5/1.32	472	50	—	12.5	HQD 315/4/2	1131	—	—	HSD 315/4/2	0348	HRFD 315/4/2	0393	
Explosion	proof Ex d	ll B, 1 ph.,	230 Volt,	50 Hz, prot	ection to	IP 55, temp	. class T1-T	3									
1370	2070	180*	1.	25*	757	40	—	13.0	HQW 315/4 Ex	0442	—	—	—	—	HRFW 315/4 E	x 0439	
Explosion	proof Ex e	l, 3 ph., 40	0 Volt, 50	Hz, protect	ion to IP	55, temp. c	lass T1-T3										
920	1400	250*	0.	97*	470	40	—	23.0	HQD 315/6 Ex	1098	—		_	—	—	—	
1350	2140	120*	0.	37*	470	40	—	14.0	HQD 315/4 Ex	1147	—	—	—	—	HRFD 315/4 Ex	0473	
2770	4130	550*	1.	43*	470	40	—	16.5	HQD 315/2 Ex	1148	—	_	_	—	HRFD 315/2 Ex	0474	
* Motor non	ninal values, I	Ex see info p	age 16.	1) Type	HRFW/6:	connect usir	ng wiring diag	gram no.	SS-963. 2) Typ	be HRFW.	./4: connect usin	ig wiring d	iagram no. SS-9	65.	³⁾ Incl. full n	notor prot	ectio

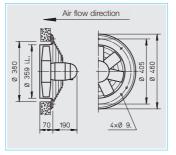

158

5) See switch product page for flush mounted version

Axial and VAR fans

Specification for all models Casing

Manufactured in galvanised sheet steel. Model HQ and HW have an additional two-layer finishing in papyrus white. Exmodels without paint.


Impeller

Highly efficient, profiled blade impeller, dynamically balanced and manufactured from impact resistant polymers. Suitable for -30 to +60 °C. Deviation for exmodels.

Motor

Totally enclosed motor with a die-cast aluminium casing, protected to IP 55. Ball bearing mounted. Maintenance-free and interference-free. Humidity protection of windings. For maximum air flow temp. see table below. Deviation for ex-models.

Motor protection

All models (3~ explosion proof excluded) have thermal contacts as standard which must be connected to a motor protection unit (see below). 1 ph. ex-proof fans have automatic resetting thermal contacts wired in series with the motor windings.

Electrical connection

Terminal box (IP 55) mounted on rear of motor as standard. Also on outside of piping for HRF. Deviation for ex-models.

Guard

Powder-coated steel wire for HQ and HW (HQ ex-models galvanised) according to DIN EN ISO 13857.

300

358

Air flow direction

HRF

For all speed controllable models the current are identified with a value in the "speed controlled" column of the table below which must be used when selecting a controller. Possible allocations of frequency inverters are specified in the table below. The planned use of a frequency inverter without Sine filter must be stated when ordering. This requires a change of fan design and potential additional costs. The air flow rates are shown in the performance curves.

Reversed operation

All models are reversible when wired to a reversing switch. For reverse air flow direction allow a loss in performance of approx. 1/3.

Installation

Installation in any position. Ensure that the motor drainage holes face downwards.

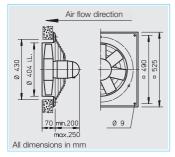

Dimensions

Pole-switch and explosion proof models may deviate from the information above.

Sound levels

See characteristic curve. The sound power and sound pressure are specified at 4 m distances under free field conditions, for average operating point suction/pressure side. See page 10 on for sound emission and acoustics. Deviation for ex-models.

R.P.M.	Air flow	Motor		rent*	Wiring	max. air f		Weight			Mode	l i			
	volume (FID)	power	standard- supply	max. controlled	diagram	standard supply	speed controlled	net	HQ incl.	Ref. no.	HW incl.	Ref. no.	HRF	Ref. no.	
min ⁻¹	V m³∕h	W	А	А	No.	+°C	+°C	kg	guard		guard				
1 Phase n	notor, 230 V	olt / 50 Hz,	capacitor	motor, pro	tection to	IP 55									
960	1940	75	0.47	0.47	475 ¹⁾	60	40	12	HQW 355/6	1107	—	—	HRFW 355/6 ¹⁾	0204	
1345	2850	130	0.60	0.65	475 ¹⁾	60	40	11	HQW 355/4	1108	HWW 355/4	1006	HRFW 355/4 ¹⁾	0205	
3 Phase n	notor, 400 V	olt / 50 Hz,	squirrel ca	age motor	protectio	n to IP 55									
960	1970	70	0.27	0.29	469	60	40	9.5	HQD 355/6	1120	—	—	—	—	
1375	2900	130	0.35	0.35	469	60	40	11.0	HQD 355/4	1121	HWD 355/4	1022	HRFD 355/4	0226	
2670	5710	825	1.60	1.60	469	60	40	15.0	HQD 355/2	1122	HWD 355/2	1023	HRFD 355/2	0227	
Two-spee	d, 3 ph., 400) V, 50 Hz, 1	$// \triangle$ switc	h, protecti	on to IP 5	5									
1120/1350	2460/2860	90/132	0.17	/0.32	520	60	—	11.0	HQD 355/4/4	1463	—	—	HRFD 355/4/4	1464	
2 speed n	notor, pole-s	switching, D)ahlander	windings,	400 Volt,	50 Hz, prot	ection to IP	55							
700/1395	1430/2920	45/145	0.14	/0.35	472	60	—	11.0	HQD 355/8/4	1132	—	—	HRFD 355/8/4	0394	
1430/2840	3050/6150	250/950*	0.63/	/2.30*	472	40	—	16.0	HQD 355/4/2	1134	—	—	HRFD 355/4/2	0396	
Explosion	proof Ex d	ll B, 1 ph.,	230 Volt, §	50 Hz, prot	ection to	IP 55, temp	. class T1-1	3							
1370	2940	180*	1.1	25*	757	40	—	18.0	HQW 355/4 E	x 0444	—	—	HRFW 355/4 E	x 0443	
Explosion	proof Ex e	II, 3 ph., 40	0 Volt, 50	Hz, protect	tion to IP	55, temp. cl	ass T1-T3								
920	2010	250*	0.9	97*	470	40	—	25.0	HQD 355/6 E	x 1101	—	—	—	—	
1350	3060	120*	0.3	37*	470	40	—	18.0	HQD 355/4 E	x 1150	—	—	HRFD 355/4 Ex	(0476	
2830	5910	1100*	2.	60*	470	40	—	12.5	HQD 355/2 E	x 1261	—	—	HRFD 355/2 Ex	0 136	
Motor non	ninal values,	Ex see info p	age 16.	1) Type H	RFW: coni	nect using wi	ring diagram	no. SS-9	965. ²⁾ Inc	I. full mot	or protection.	3)	ncl. pole switch.		

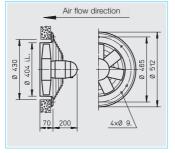


4) See switch product page for flush mounted version

Axial and VAR fans

Specification for all models Casing

Manufactured in galvanised sheet steel. Model HQ and HW have an additional two-layer finishing in papyrus white. Exmodels without paint.


Impeller

Highly efficient, profiled blade impeller, dynamically balanced and manufactured from impact resistant polymers. Suitable for -30 to +60 °C. Deviation for exmodels.

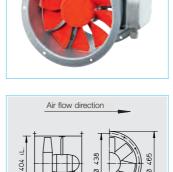
Motor

Totally enclosed motor with a die-cast aluminium casing, protected to IP 55. Ball bearing mounted. Maintenance-free and interference-free. Humidity protection of windings. For maximum air flow temp. see table below. Deviation for ex-models.

Motor protection

All models (explosion proof excluded) have thermal contacts as standard which must be connected to a motor protection unit (see below).

Electrical connection


Terminal box (IP 55) mounted on rear of motor as standard. Also on outside of piping for HRF. Deviation for ex-models.

Guard

Powder-coated steel wire for HQ and HW (HQ ex-models galvanised) according to DIN EN ISO 13857

Speed control

For all speed controllable models the current are identified with a value in the "speed controlled" column of the table below which must be used when selecting a controller. Possible allocations of frequency inverters are specified in the table below. The planned

HRF

use of a frequency inverter without Sine filter must be stated when ordering. This requires a change of fan design and potential additional costs. The air flow rates are shown in the performance curves.

Reversed operation

330

All models are reversible when wired to a reversing switch. For reverse air flow direction allow a loss in performance of approx. 1/3.

Installation

Installation in any position. Ensure that the motor drainage holes face downwards.

Dimensions

Pole-switch and explosion proof models may deviate from the information above.

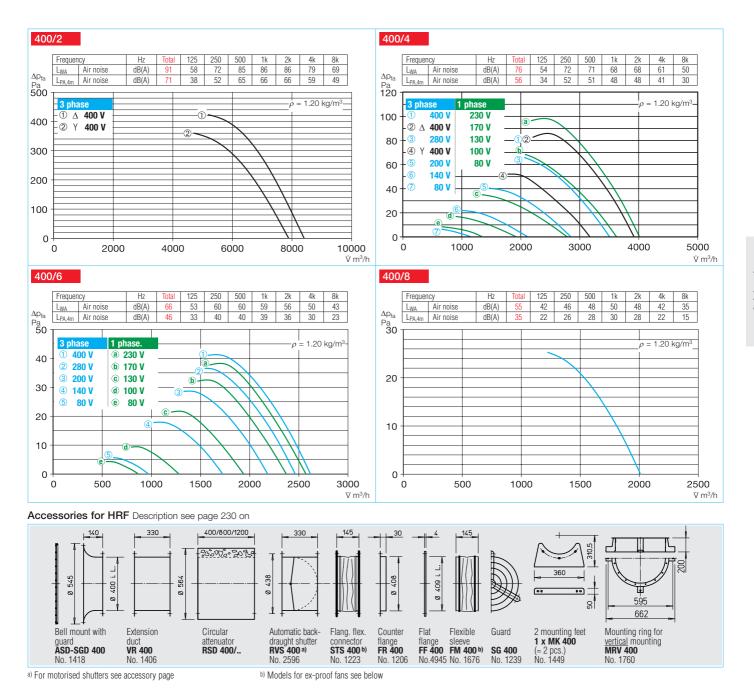
Sound levels

See characteristic curve. The sound power and sound pressure are specified at 4 m distances under free field conditions, for average operating point suction/pressure side. See page 10 on for sound emission and acoustics. Deviation for ex-models.

Information

Techn. description	140
Selection chart	141
Information for planning	10 on

Page

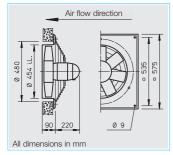

Made to order designs

Alternative voltages, protection classes, air flow direction, air flow temperature, acid protection and cast aluminium impellers are available on request.

Note the technical information on page 15 on.

R.P.M.	Air flow	Motor		Current* Wiring max. air flo				Weight		Model					
	volume (FID)	power	standard- supply	max. controlled	diagram	standard supply	speed controlled	net	HQ incl.	Ref. no.	HW incl.	Ref. no.	HRF	Ref. no.	
min ⁻¹	Ÿ m³∕h	W	А	А	No.	+°C	+°C	kg	guard		guard				
1 Phase n	notor, 230 V	olt / 50 Hz,	capacitor	motor, pro	tection to	IP 55									
930	2570	77	0.52	0.54	475 ¹⁾	60	40	13.0	HQW 400/6	1110	—	—	HRFW 400/6 ¹⁾	0206	
1350	4010	235	1.00	1.10	475 ¹⁾	60	40	14.0	HQW 400/4	1111	HWW 400/4	1008	HRFW 400/4 ¹⁾	0207	
3 Phase n	notor, 400 V	olt / 50 Hz,	squirrel ca	ige motor	protectio	n to IP 55									
950	2620	89	0.28	0.30	469	60	40	13.0	HQD 400/6	1123	—	—	—	—	
1330	3960	200	0.40	0.40	469	60	40	14.0	HQD 400/4	1124	HWD 400/4	1025	HRFD 400/4	0229	
Two-spee	d, 3 ph., 40	0 V, 50 Hz, 1	I/\triangle switch	n, protecti	on to IP 5	5									
1325/1085	3170/3920	135/205	0.25/0.45	0.45	520	60	40	20.0	HQD 400/4/4	1465	—	—	HRFD 400/4/4	1466	
2890/2600	7890/8400	1300/2310*	3.00/5.60*	4.70	520	40	40	25.0	HQD 400/2/2	1475	—	—	HRFD 400/2/2	1474	
2 speed m	notor, pole-	switching, D	Dahlander	windings,	400 Volt,	50 Hz, prote	ection to IP	55							
690/1390	2010/4100	70/250	0.25/0.60		472	60	—	13.0	HQD 400/8/4	1137	—	—	HRFD 400/8/4	0399	
1480/2940	4180/8540	300/2310*	1.00/5.20*	—	472	40	—	24.0	HQD 400/4/2	1139	_	—	HRFD 400/4/2	0401	
Explosion	proof Ex e	II, 3 ph., 40	0 Volt, 50 H	lz, protect	ion to IP	55, temp. cl	ass T1-T3								
920	2870	250*	0.97*	—	470	40	—	13.0	HQD 400/6 E	x 1109	_	—	—	—	
1370	4380	370*	1.08*	—	470	40	—	16.0	HQD 400/4 E	x 1153	_	-	HRFD 400/4 E	x 0479	
Motor nom	ninal values,	Ex see info p	age 16.	1) Type H	IRFW: conr	nect using wi	iring diagram	no. SS-9	65. ²⁾ In	cl. full mo	tor protection.	3)	Incl. pole switch.		

Frequency in with integr Sine filte	ated	Transformer 5-spe Pole sw	ed	Electronic co steple flush/s	SS	Full motor for connecti grated therm	ion of inte-	Reversing switch		
Model	Ref. no.	Model	Ref. no.	Model	Ref. no.	Model	Ref. no.	Model	Ref. no.	
—	—	MWS 1,5 ²⁾	1947	ESU 1/ESA 1	0236/0238	MW	1579	WS	1271	
—	—	MWS 1,5 ²⁾	1947	ESU 3/ESA 3	0237/0239	MW	1579	WS	1271	
FU-BS 2,5 ²⁾	5459	RDS 1 ²⁾	1314	—	—	MD	5849	WS	1271	
FU-BS 2,5 ²⁾	5459	RDS 1 ²⁾	1314	—	—	MD	5849	WS	1271	
		Speed switch	ı							
FU-BS 2,5 ²⁾	5459	RDS 1 ²⁾	1314	—	—	M 4 ⁴⁾ /MD	1571/5849	WS	1271	
FU-BS 5 ²⁾	5460	DS 2	1351	ESD 5 ²⁾	0501	M 4 ⁴⁾ /MD	1571/5849	WS	1271	
		Pole switch								
—	—	PDA 12 ⁴⁾	5081	—	—	M 3 ³⁾	1293	PWDA	1282	
—	—	PDA 12 ⁴⁾	5081	—	—	M 3 ³⁾	1293	PWDA	1282	
—	—	not perr	nitted	not perr	mitted	_	—	_	—	
_	_	not perr	nitted	not perr	mitted	_	—	—	—	


4) see switch product page for flush mounted version.

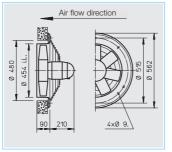
Other accessories	Page
^{b)} Accessories for exp proof fans Flanged flexible conr Type STS 400 Ex Ref. Flexible sleeve Type FM 400 Ex Ref.	no. 2505
Extension tube for HS Type VH 400 Ref Cylindrical duct, galvar length: 150 mm.	s . no. 1346
Attenuators Shutters and grilles Speed controllers and switches	421 on 487 on 525 on

Axial and VAR fans

HQ

Specification for all models Casing

Manufactured in galvanised sheet steel. Model HQ and HW have an additional two-layer finishing in papyrus white. Exmodels without paint.


Impeller

Highly efficient, profiled blade impeller, dynamically balanced and manufactured from impact resistant polymers. Suitable for -30 to +60 °C. Deviation for exmodels.

Motor

Totally enclosed motor with a die-cast aluminium casing, protected to IP 55. Ball bearing mounted. Maintenance-free and interference-free. Humidity protection of windings. For maximum air flow temp. see table below. Deviation for ex-models.

Motor protection

All models (explosion proof excluded) have thermal contacts as standard which must be connected to a motor protection unit (see below).

Electrical connection

Terminal box (IP 55) mounted on rear of motor as standard. Also on outside of piping for HRF. Deviation for ex-models.

Guard

Powder-coated steel wire for HQ and HW (HQ ex-models galvanised) according to DIN EN ISO 13857.

330

0 454 1

HRF

For all speed controllable models the current are identified with a value in the "speed controlled" column of the table below which must be used when selecting a controller. Possible allocations of frequency inverters are specified in the table below. The planned use of a frequency inverter without Sine filter must be stated when ordering. This requires a change of fan design and potential additional costs. The air flow rates are shown in the performance curves.

Air flow direction

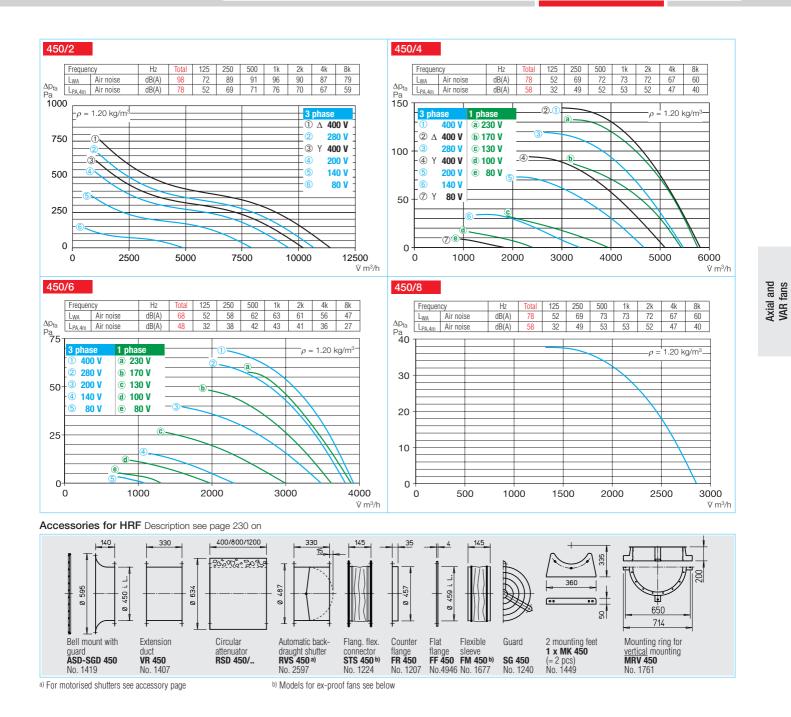
Reversed operation

All models are reversible when wired to a reversing switch. For reverse air flow direction allow a loss in performance of approx. 1/3.

Installation

Installation in any position. Ensure that the motor drainage holes face downwards.

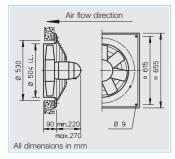
Dimensions


Pole-switch and explosion proof models may deviate from the information above.

Sound levels

See characteristic curve. The sound power and sound pressure are specified at 4 m distances under free field conditions, for average operating point suction/pressure side. See page 10 on for sound emission and acoustics. Deviation for ex-models.

R.P.M.	Air flow	Motor		rent*	Wiring		low temp.	Weight			Mode	l		
	volume (FID)	power	standard- supply	max. controlled	diagram	standard supply	speed controlled	net	HQ incl.	Ref. no.	HW incl.	Ref. no.	HRF	Ref. no.
min ⁻¹	∀m³/h	W	А	A	No.	+°C	+°C	kg	guard		guard			
1 Phase r	notor, 230 V	olt / 50 Hz,	capacitor	motor, pro	tection to	IP 55								
915	3890	136	0.63	0.63	475 ¹⁾	60	40	19.0	HQW 450/6	0991	—	—	HRFW 450/6 ¹⁾	0208
1380	5770	405	1.76	2.02	475 ¹⁾	60	40	18.0	HQW 450/4	0992	HWW 450/4	1010	HRFW 450/4 ¹⁾	0209
3 Phase r	notor, 400 V	olt / 50 Hz,	squirrel ca	age motor	protectio	n to IP 55								
960	3920	137	0.38	0.42	469	60	40	18.0	HQD 450/6	0993	—	—	HRFD 450/6	0230
1390	5810	384	0.81	0.92	469	50	40	17.0	HQD 450/4	0994	HWD 450/4	1028	HRFD 450/4	0231
Two-spee	ed, 3 ph., 40	0 V, 50 Hz, Y	I/ \triangle switcl	h, protecti	on to IP 5	5								
1130/1390	5090/5780	280/378	0.51/0.82	—	520	60	—	22.0	HQD 450/4/4	1467	—	—	HRFD 450/4/4	1468
2775/2200	10190/9335	1300/2310*	5.40/3.0*	5,10	520	40	40	32.0	—	—	—	—	HRFD 450/2/2	0484
2 speed r	notor, pole-:	switching, [Dahlander	windings,	400 Volt,	50 Hz, prot	ection to IP	55						
480/970	1930/3950	62/163	0.22/0.47	—	472	60	—	18.0	HQD 450/12/6	0995	—	—	—	—
705/1410	2860/5810	91/404	0.36/0.92	—	472	50	—	20.0	HQD 450/8/4	0996	—	—	HRFD 450/8/4	0403
Explosion	proof Ex e	II, 3 ph., 40	0 Volt, 50 I	Hz, protect	tion to IP	55, temp. c	lass T1-T3							
920	4090	250*	0.97*	—	470	40	—	15.5	HQD 450/6 Ex	1473	—	—	—	—
1370	6240	370*	1.08*	—	470	40	—	15.5	HQD 450/4 Ex	1154	—	—	HRFD 450/4 E	c 0481
' Motor nor	ninal values,	Ex see info p	age 16.	1) Type H	IRFW: conr	nect using w	iring diagram	no. SS-9	965. 2)	ncl. full m	notor protection.	3)	see switch produ	ict page fo



Frequency in with integr Sine filt	ated	Transformer o 5-spec Pole sw	ed	Electronic co steple: flush/si	SS	Full motor for connect grated therm	ion of inte-	Reversing	g switch
Model	Ref. no.	Model	Ref. no.	Model	Ref. no.	Model	Ref. no.	Model	Ref. no.
—	—	MWS 1,5 ²⁾	1947	ESU 3/ESA 3	0237/0239	MW	1579	WS	1271
_	—	MWS 3 ²⁾	1948	ESU 3/ESA 3	0237/0239	MW	1579	WS	1271
FU-BS 2,5 ²⁾	5459	RDS 1 ²⁾	1314	_	_	MD	5849	WS	1271
FU-BS 2,5 ²⁾	5459	RDS 2 ²⁾	1315	ESD 5 ²⁾	0501	MD	5849	WS	1271
		Speed switch	l						
FU-BS 2,5 ²⁾	5459	DS 2 ⁵⁾	1351	—	—	M 4 ⁴⁾ /MD	1571/5849	WS	1271
FU-BS 8,0 ²⁾	5461	RDS 7 ²⁾	1578	ESD 11,5 ²⁾	0502	M 4 ⁴⁾ /MD	1571/5849	WS	1271
		Pole switch							
—	—	PDA 12 ³⁾	5081	_	—	M 3 ⁴⁾	1293	PWDA	1282
	—	PDA 12 ³⁾	5081	—	—	M 3 ⁴⁾	1293	PWDA	1282
_	_	not pern	nitted	not pern	nitted	—	—	—	—
—	-	not perr	nitted	not perr	nitted	_	—	—	_
⁴⁾ Incl. pole swi	tch.		⁵⁾ Sp	beed switch.					

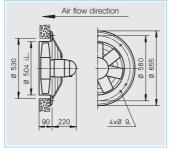
Other accessories	Page
^{b)} Accessories for exp proof fans Flanged flexible conn Type STS 450 Ex Ref.	ector
Flexible sleeve Type FM 450 Ex Ref.	no. 1693
Attenuators Shutters and grilles Speed controllers	421 on 487 on
and switches	525 on

Specification for all models Casing

Manufactured in galvanised sheet steel. Model HQ and HW have an additional two-layer finishing in papyrus white. Exmodels without paint.

Impeller

Highly efficient, profiled blade impeller, dynamically balanced and manufactured from impact resistant polymers. Suitable for -30 to +60 °C. Deviation for exmodels.


Motor

Totally enclosed motor with a die-cast aluminium casing, protected to IP 55. Ball bearing mounted. Maintenance-free and interference-free. Humidity protection of windings. For maximum air flow temp. see table below. Deviation for ex-models.

HRF

504

Motor protection

All models (explosion proof excluded) have thermal contacts as standard which must be connected to a motor protection unit (see below).

Electrical connection

Terminal box (IP 55) mounted on rear of motor as standard. Also on outside of piping for HRF. Deviation for ex-models.

Guard

Powder-coated steel wire for HQ and HW (HQ ex-models galvanised) according to DIN EN ISO 13857.

Speed control

For all speed controllable models the current are identified with a value in the "speed controlled" column of the table below which must be used when selecting a controller. Possible allocations of frequency inverters are specified in the table below. The planned use of a frequency inverter without Sine filter must be stated when ordering. This requires a change of fan design and potential additional costs. The air flow rates are shown in the performance curves.

Air flow direction

Reversed operation

330

All models are reversible when wired to a reversing switch. For reverse air flow direction allow a loss in performance of approx. 1/3.

Installation

Installation in any position. Ensure that the motor drainage holes face downwards.

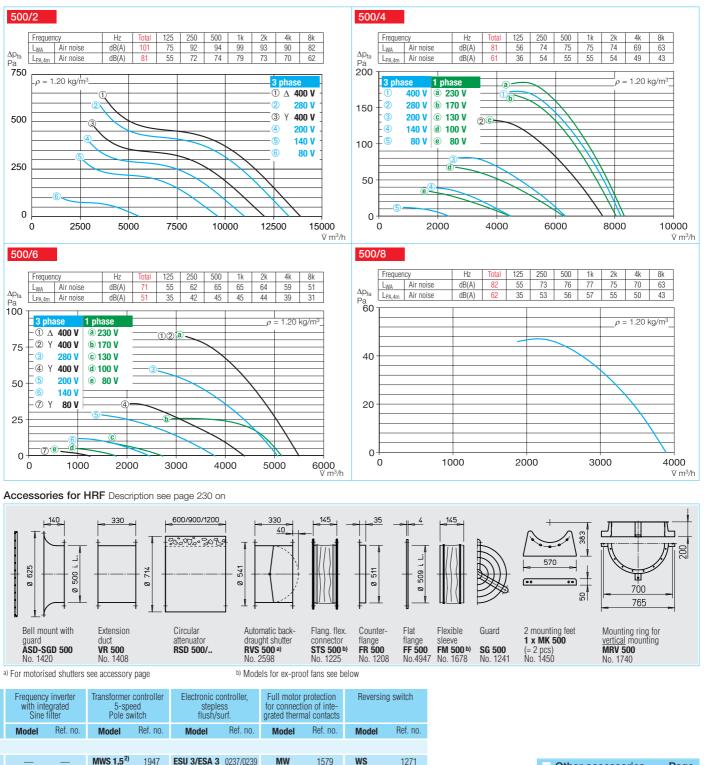
Dimensions

Pole-switch and explosion proof models may deviate from the information above.

Sound levels

See characteristic curve. The sound power and sound pressure are specified at 4 m distances under free field conditions, for average operating point suction/pressure side. See page 10 on for sound emission and acoustics. Deviation for ex-models.

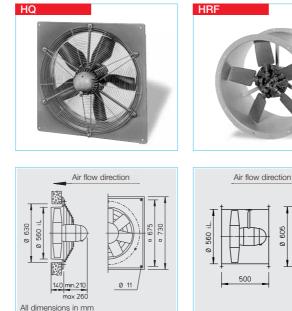
Information


Page Techn. description 140 Selection chart 141 10 on Information for planning

Made to order designs

Alternative voltages, protection classes, air flow direction, air flow temperature, acid protection and cast aluminium impellers are available on request.

R.P.M.	Air flow	Motor		Current* Wiring				Weight		Model				
	volume (FID)	power	standard- supply	max. controlled	diagram	standard supply	speed controlled	net	HQ incl.	Ref. no.	HW incl.	Ref. no.	HRF	Ref. no.
min ⁻¹	∀m³/h	W	А	А	No.	+°C	+°C	kg	guard		guard			
1 Phase r	notor, 230 V	olt / 50 Hz,	capacitor	motor, pro	tection to	IP 55								
935	5500	233	1.05	1.25	475 ¹⁾	60	40	19.0	HQW 500/6	1112	—	—	HRFW 500/6 ¹⁾	0210
1375	8320	1100*	5.90*	4.94	475 ¹⁾	40	40	25.0	HQW 500/4	1113	—	—	HRFW 500/4 ¹⁾	0211
3 Phase r	notor, 400 V	olt / 50 Hz,	squirrel ca	age motor	protectio	n to IP 55								
920	5480	218	0.48	0.55	469	60	40	19.0	HQD 500/6	1126	—	—	HRFD 500/6	0232
1345	8200	620	1.22	1.32	469	40	40	19.5	HQD 500/4	1127	HWD 500/4	1030	HRFD 500/4	0233
Two-spee	ed, 3 ph., 40	0 V, 50 Hz, Y	I/ \triangle switc	h, protecti	on to IP 5	5								
615/920	4330/5450	133/214	0.29/0.46	—	520	60	—	18.0	HQD 500/6/6	1471	—	—	—	—
1030/1350	6720/8150	416/617	0.76/1.19	—	520	60	—	24.0	HQD 500/4/4	1469	—	—	HRFD 500/4/4	1470
2450/2830	13615/12050	1960/2470*	3.14/4.73*	—	520	40	—	30.0	—		—	—	HRFD 500/2/2	0485
2 speed n	notor, pole-	switching, D	Dahlander	windings,	400 Volt,	50 Hz, prot	ection to IP	55						
465/940	2680/5490	71/248	0.23/0.56	—	472	60	—	18.0	HQD 500/12/6	1140	—	—	—	—
700/1385	3890/8280	137/688	0.52/1.48	—	472	40	—	22.0	HQD 500/8/4	1142	—	—	HRFD 500/8/4	0407
Explosion	n proof Ex e	II, 3 ph., 40	0 Volt, 50	Hz, protec	tion to IP	55, temp. c	lass T1-T3							
920	5610	250*	0.97*	—	470	40	—	18.0	HQD 500/6 Ex	1050	—		HRFD 500/6 Ex	0489
1390	8560	750*	2.00*	—	470	40	—	18.0	HQD 500/4 Ex	1157	—	—	HRFD 500/4 Ex	0483
* Motor nor	minal values,	Ex see info p	age 16.	1) Type H	HRFW: con	nect using w	iring diagram	no. SS-9	965. ²⁾	ncl. full n	notor protection.	3)	Incl. pole switch.	


—	—	MWS 1,5 ²⁾	1947	ESU 3/ESA 3	0237/0239	MW	1579	WS	1271
_	—	MWS 5 ²⁾	1949	ESU 5/ESA 5	1296/1299	MW	1579	WS	1271
FU-BS 2,5 ²⁾	5459	RDS 1 ²⁾	1314	ESD 5 ²⁾	0501	MD	5849	WS	1271
FU-BS 2,5 ²⁾	5459	RDS 2 ²⁾	1315	ESD 5 ²⁾	0501	MD	5849	WS	1271
		Speed switch							
FU-BS 2,5 ²⁾	5459	DS 2 ⁵⁾	1351	—		M 4 ⁴⁾ /MD	1571/5849	WS	1271
FU-BS 2,5 ²⁾	5459	DS 2 ⁵⁾	1351	ESD 5 ²⁾	0501	M 4 ⁴⁾ /MD	1571/5849	WS	1271
FU-BS 5,0 ²⁾	5460	RDS 7 ²⁾	1578	ESD 11,5 ²⁾	0502	M 4 ⁴⁾ /MD	1571/5849	WS	1271
		Pole switch							
—	—	PDA 12 ⁴⁾	5081	—	—	M 3 ³⁾	1293	PWDA	1282
—	—	PDA 12 ⁴⁾	5081	—	—	M 3 ³⁾	1293	PWDA	1282
_	—	not perm	itted	not perr	nitted	—	—	_	_
—	—	not perm	itted	not perr	nitted	—	—	—	—
 A) O = a = a = a = b = a = a = a 				5) 0	and an other la				

Other accessorie	es Page
^{b)} Accessories for e proof fans Flanged flexible co Type STS 500 Ex R Flexible sleeve Type FM 500 Ex R	nnector def. no. 2507
Extension tube for Type VH 500 F Cylindrical duct, galv length: 150 mm.	Ref. no. 1348
Attenuators Shutters and grilles Speed controllers and switches	421 on 487 on 525 on

5) Speed switch

⁴⁾ See switch product page for flush mounted version.

Axial and VAR fans

All dimensions in mm

Specification for all models Casing

Manufactured in galvanised sheet steel. Model HQ have an additional two-layer finishing in papyrus white. Ex-models without paint.

Impeller

Highly efficient, profiled blade impeller, dynamically balanced and manufactured from impact resistant polymers. Suitable for -30 to +60 °C. Deviation for exmodels.

□ Motor

Totally enclosed motor with a die-cast aluminium casing, protected to IP 55. Ball bearing mounted. Maintenance-free and interference-free. Humidity protection of windings. For maximum air flow temperature see table below. Deviation for exmodels.

Motor protection

All models (except explosion proof) have thermal contacts as standard which must be connected to a motor protection unit (see below) for effective motor protection.

Electrical connection

Terminal box (IP 55) mounted on rear of motor as standard. Also on outside of piping for HRF. Deviation for ex-models.

Guard

Powder-coated steel wire for HQ (Ex-models galvanised) according to DIN EN ISO 13857.

Speed control

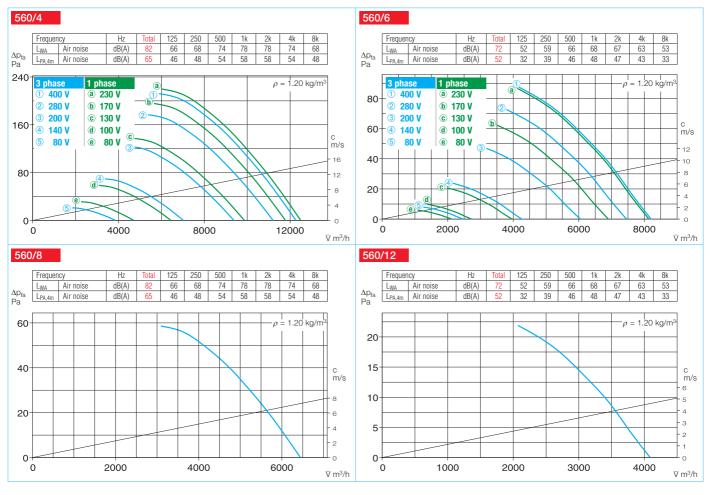
For all speed controllable models the current are identified with a value in the "speed controlled" column of the table below which must be used when selecting a controller. Possible allocations of frequency inverters are specified in the table below. The planned use of a frequency inverter without Sine filter must be stated when ordering. This requires a change of fan design and potential additional costs. The air flow rates are shown in the performance curves.

Reversed operation

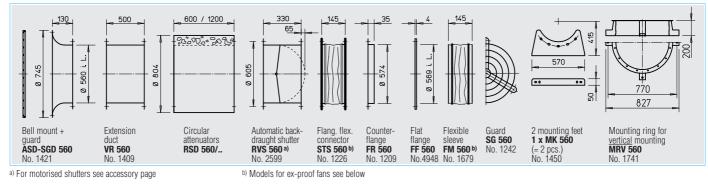
All models are reversible when wired to a reversing switch. For reverse air flow direction allow a loss in performance of approx. 1/3.

Installation

Installation in any position. Ensure that the motor drainage holes face downwards.


Dimensions

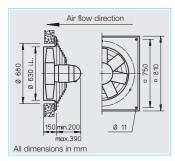
Pole-switch and explosion proof models may deviate from the information above.


Sound levels

See characteristic curve. The sound power and sound pressure are specified at 4 m distances under free field conditions, for average operating point suction/pressure side. See page 10 on for sound emission and acoustics. Deviation for ex-models.

R.P.M.	Air flow	Motor		rent*	Wiring	max. air f		Weight		Мо	odel		Transformer of		Electronic co		
	volume (FID)	power (nominal)*	standard- supply	max. controlled	diagram	standard supply	speed controlled	net	HQ incl.	Ref. no.	HRF	Ref. no.	for 5 speed pole switch		stepless flush/surf.		
min ⁻¹	∀ m³/h	kW	А	А	No.	+°C	+°C	kg	guard				Model	Ref. no.	Model	Ref. no.	
1 Phase r	notor, 230 V	olt / 50 Hz,	capacitor	motor, pro	tection to	IP 55											
935	8130	0.27	1.40	2.00	475 ¹⁾	60	40	24.0	HQW 560/6	0385	HRFW 560/6 ¹⁾	0380	MWS 3 ²⁾	1948	ESU 3/ESA 3	0237/0239	
1370	12180	0.89	4.15	5.00	965	60	40	31.0	HQW 560/4	5054	HRFW 560/4	5055	MWS 7,5 ²⁾	1950	ESU 5/ESA 5	1296/1299	
3 Phase n	notor, 400 V	olt / 50 Hz,	squirrel ca	age motor	protectio	n to IP 55											
965	8180	0.28	0.79	1.00	469	60	40	26.0	HQD 560/6	0386	HRFD 560/6	0381	RDS 2 ²⁾	1315	ESD 5 ²⁾	0501	
1365	12250	0.88	1.71	1.80	469	40	40	29.0	HQD 560/4	0387	HRFD 560/4	0382	RDS 2 ²⁾	1315	ESD 5 ²⁾	0501	
2 speed n	notor, pole-s	switching, D)ahlander	windings,	400 Volt,	50 Hz, prote	ection to IP	55					Pole switch				
470/955	4000/8130	0.089/0.298	0.55/0.74	—	472	60	—	24.0	HQD 560/12/6	0389	HRFD 560/12/6	0384	PDA 12 ³⁾	5081	—	—	
720/1365	6400/12130	0.20/0.92	0.80/1.77	—	472	40	—	26.0	HQD 560/8/4	0388	HRFD 560/8/4	0383	PDA 12 ³⁾	5081	—	—	
Explosion	proof Ex e	ll, 3 ph., 40	0 Volt, 50 I	Hz, protect	ion to IP	55, temp. cl	ass T1-T3										
920	8090	0.25*	0.97*	—	470	40	—	23.0	HQD 560/6 Ex	0378	HRFD 560/6 Ex	0376	not perm	itted	not perm	itted	
1390	12890	0.75*	2.00*	—	470	40	—	24.0	HQD 560/4 Ex	0379	HRFD 560/4 Ex	0377	not perm	itted	not perm	itted	
* Ex-models	s: for nominal	value of mo	tor see info	mation on	bage 16	¹⁾ Type HRFV	I: connect us	ing wirin	g diagram no. SS	-965 2)	Incl. full motor pr	otection	3) see switch	product p	age for flush mo	unted versio	n

Accessories for HRF Description see page 230 on


page 15 on.

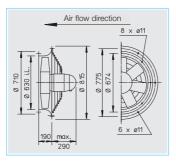
Electronic con stepless c		Full motor starter using thermal c	protection the motor contacts	Reversing switch			
Model	Ref. no.	Model	Ref. no.	Model	Ref. no.		
_	—	MW	1579	WS	1271		
_	_	MW	1579	WS	1271		
FU-BS 2,5 ²⁾	5459	MD	5849	WS	1271		
FU-BS 2,5 ²⁾	5459	MD	5849	WS	1271		
_	—	M 3 ⁴⁾	1293	PWDA	1282		
—	—	M 3 ⁴⁾	1293	PWDA	1282		
_	-	_	_	_	_		
_	—	_	—	—	—		
4) Incl. pole sw	ritch						

Information	Page	Other accessories	Page			
Techn. description Selection chart	140 141	^{b)} Accessories for expl proof fans	osion			
Information for planning	10 on	Flanged flexible conn Type STS 560 Ex Ref.				
Made to order designs Alternative voltages, prote classes, air flow direction,		Flexible sleeve Type FM 560 Ex Ref.				
temperature, acid protect cast aluminium impellers available on request.		Attenuators Shutter and grilles Speed controllers	434 on 487 on			
Note the technical information	ation on	and switches 525				

HQ

Specification for all models Casing

Manufactured in galvanised sheet steel.


Impeller

Highly efficient, profiled blade impeller, dynamically balanced and manufactured from impact resistant polymers. Suitable for -30 to +60 °C. Deviation for exmodels.

Motor

Totally enclosed motor with a die-cast aluminium casing, protected to IP 55. Ball bearing mounted. Maintenance-free and interference-free. Humidity protection of windings. For maximum air flow temperature see table below. Deviation for exmodels.

Motor protection

All models (except .../8/4 and explosion proof) have thermal contacts as standard which must be connected to a motor protection unit (see below) for effective motor protection. Motors without thermal contacts must be protected by a conventional circuit breaker.

Electrical connection

Terminal box (IP 55) mounted on motor as standard. Also on outside of piping for HRF. Deviation for ex-models.

Guard

Powder-coated steel wire for HQ and HW (HQ.. Ex galvanised) according to DIN EN ISO 13857.

Speed control

500

630

Air flow direction

Type HRFW 630/4 motor build

length with 25 mm projection

0 11.5

HRF

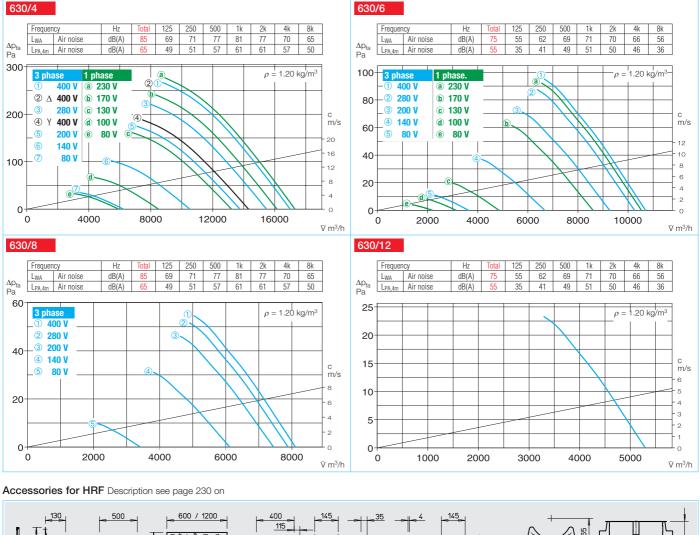
For all speed controllable models the current are identified with a value in the "speed controlled" column of the table below which must be used when selecting a controller. Possible allocations of frequency inverters are specified in the table below. The planned use of a frequency inverter without Sine filter must be stated when ordering. This requires a change of fan design and potential additional costs. The air flow rates are shown in the performance curves.

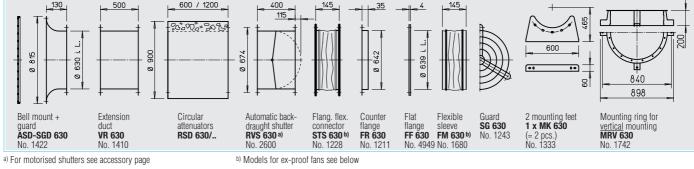
Reversed operation

All models are reversible when wired to a reversing switch. For reverse air flow directionallow a loss in performance of approx. ¹/₃.

Installation

Installation in any position. Ensure that the motor drainage holes face downwards.


Dimensions


Pole-switch and explosion proof models may deviate from the information above.

Sound levels

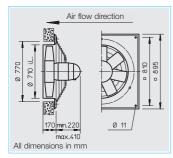
See characteristic curve. The sound power and sound pressure are specified at 4 m distances under free field conditions, for average operating point suction/pressure side. See page 10 on for sound emission and acoustics. Deviation for ex-models.

R.P.M.	Air flow	Motor		rent*	Wiring	max. air fl		Weight			Mode	1			Transformer controller		
	volume (FID)	power (nominal)*	standard- supply	max. controlled	diagram	standard supply	speed controlled	net	HQ incl.	Ref. no.	HW incl.	Ref. no.	HRF	Ref. no.	for 5 sp pole sw		
min-1	∀m³/h	kW	А	А	No.	+°C	+°C	kg	guard		guard				Model	Ref. no.	
1 Phase r	notor, 230 V	olt / 50 Hz,	capacitor	motor, pro	tection to	IP 55											
950	10530	0.44	2.16	3.20	475	60	40	28.0	HQW 630/6	5037	_	—	—	—	MWS 3 ¹⁾	1948	
1325	16210	1.50*	8.40*	7.00	964	40	—	40.0	HQW 630/4	5056	—	—	HRFW 630/4	5057	MWS 7,5 ¹⁾	1950	
3 Phase n	notor, 400 V	olt / 50 Hz,	squirrel ca	age motor	protectio	n to IP 55											
710	7810	0.20	0.66	0.70	469	40	40	27.0	HQD 630/8	5029	—	—	—	—	RDS 2 ¹⁾	1315	
960	10560	0.44	1.22	—	469	60	40	30.5	HQD 630/6	5027	HWD 630/6	1032	HRFD 630/6	0244	RDS 2 ¹⁾	1315	
Two-spee	ed, 3 ph., 400) V, 50 Hz, Y	$/$ \triangle switcl	h, protecti	on to IP 5	5											
1170/1390	14310/17000	0.90/1.57	2.3/3.8	—	520	40	—	37.5	HQD 630/4/4	5030	HWD 630/4/4	1033	HRFD 630/4/4	0245	RDS 4 ¹⁾	1316	
2 speed n	notor, pole-s	witching, D	ahlander	windings,	400 Volt,	50 Hz, prote	ection to IP	55									
440/935	5290/10470	0.14/0.43	0.60	/1.13	472	60	—	41.0	HQD 630/12/6	5031	_	—	HRFD 630/12/6	0410	PDA 12 ²⁾	5081	
690/1400	7990/15990	0.37/1.50*	1.33/	'3.70*	471	40	—	40.5	HQD 630/8/4	5032		—	HRFD 630/8/4	0411	PDA 12 ²⁾	5081	
Explosion	proof Ex e	ll, 3 ph., 400) Volt, 50 I	Hz, protect	tion to IP	55, temp. cl	ass T1-T3										
910	10480	0.55*	1.7	75*	470	40	—	30.0	HQD 630/6 Ex	5035	_	—	HRFD 630/6 Ex	0494	not perm	itted	
1410	17730	1.35*	3.1	10*	470	40	—	35.0	HQD 630/4 Ex	5036		—	HRFD 630/4 Ex	0495	not perm	itted	
* Ex-models	s: for nominal	value of mot	or see infor	mation on	page 16	1) Inc	l. full motor j	protectior	1	²⁾ see sw	itch product page	e for flush	mounted version				

Frequency inverter with integrated Sine filter		Electronic co steple: flush/si	SS	Full motor for connecti grated therm	on of inte-	Reversing	g switch
Model	Ref. no.	Model	Ref. no.	Model	Ref. no.	Model	Ref. no.
—	—	ESU 5/ESA 5	1296/1299	MW	1579	WS	1271
—	—	—	—	MW	1579	WS	1271
FU-BS 2,5 ¹⁾	5459	ESD 5 ¹⁾	0501	MD	5849	WS	1271
FU-BS 2,5 ¹⁾	5459	ESD 5 ¹⁾	0501	MD	5849	WS	1271
FU-BS 5,0 ¹⁾	5460	ESD 5 ¹⁾	0501	M 4 ³⁾	1571	WS	1271
—	—	—	—	M 3 ³⁾	1293	PWDA	1282
—	—	—	—	M 3 ³⁾	1293	PWDA	1282
—	—	not permitted		—	—	—	—
—	—	not perm	itted	—	—	—	—

Information	Page	Other accessories Page			
Techn. description	140	^{b)} Accessories for explosion			
Selection chart	141	proof fans			
Information for planning	10 on	Flanged flexible connector			
		Type STS 630 Ex Ref. no. 2509			
Made to order designs		Flexible sleeve			
Alternative voltages, prote		Type FM 630 Ex Ref. no. 1696			
classes, air flow direction,					
temperature, acid protect	ion and	Attenuators 434 on			
cast aluminium impellers	are	Shutter and grilles 487 on			
available on request.		Speed controllers			

Note the technical information on page 15 on.


and switches

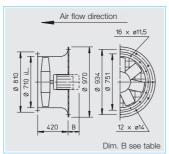
Helios

525 on

HQ

Specification for all models Casing

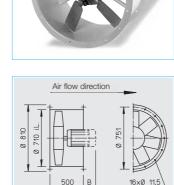
With motor support manufactured from galvanised sheet steel.


Impeller

Highly efficient, profiled blade impeller, dynamically balanced and manufactured from impact resistant polymers. Suitable for -30 to +60 °C. Deviation for exmodels.

Pitch angle

The impeller blades are adjustable for the optimal coverage of the operating point (except HQW 710/6 and explosion proof). The pitch angle is set at the factory (according to the


order) and fixed. The motor allocation takes place using the maximum power pursuant to the information in the table below. The specified pitch angle shown for each motor must not be exceeded.

Motor

Totally enclosed motor protected to IP 55. Maintenance-free and interference-free. Humidity protection of tropicalized windings. Deviation for ex-models.

Motor protection

All models (except pole switching and explosion proof) have thermal contacts or PTC thermistors and according to footnotes in the table to protect

HRF/AVD RK

through the following full motor protection units:

Dim. B see table

*420

 ¹MW/MD, Ref. no. 1579/5849
 ^aMSA, Ref. no. 1289 (for PTC thermistor temp. sens)
 ³M4, Ref. no. 1571 All other models have to be protected by a conventional circuit breaker on site.

Guard

* AVD RK

Hot-dipped or powder-coated as standard for HQ and AVD DK according to DIN EN ISO 13857.

Electrical connection

Terminal box protected to IP 54 mounted on motor. Outside of piping for HRF. Deviation for exmodels.

Speed control

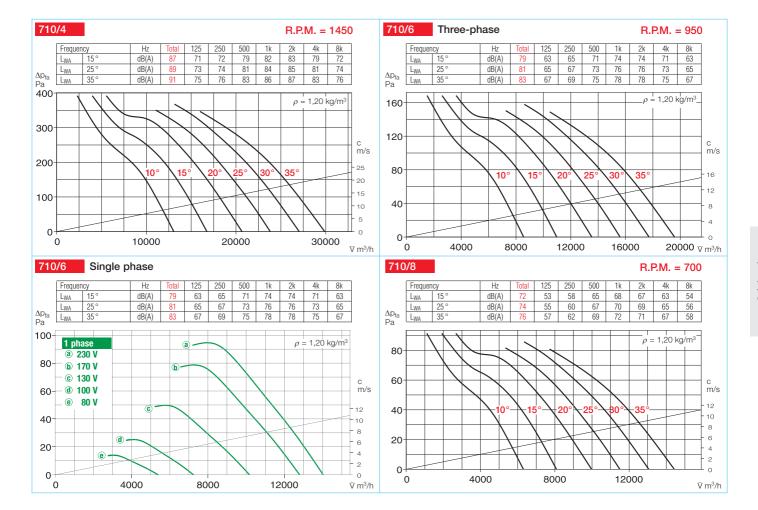
Partial through voltage reduction, see the "transformer controller" column. Regulated performance curve upon request. Possible allocations of frequency inverters for all types (except pole-switch and ex-proof). The planned use of a frequency inverter without Sine filter must be stated when ordering. This requires a change of fan design and potential additional costs.

Reversed operation

All models are reversible when wired to a reversing switch. For reverse air flow direction allow a loss in performance of approx. 1/3.

Installation

Installation in any position. Ensure that the motor drainage holes face downwards.


Dimensions

Pole-switch and explosion proof models may deviate from the adjacent information. Motor build lengths vary. Note dimension B projection.

Sound levels

The sound power levels are specified through the frequency and as sum levels above the characteristic curves. Deviation for ex-models.

R.P.M.	Air flow	Motor	Voltage	Power con.		Wiring	max. air	Weight			Model					Transformer		
	volume (FID)	power (nomi- nal)*		nom. volt./ (control)*	pitch angle	diagram	flow temp.	net ^{**)}	HQ incl. guard	Ref. no.	AVD DK I incl. quard	Ref. no.	HRFD, AVD RK	Ref. no.	motor projection	for 5 s pole sv		
min-1	V m³∕h	kW	V	А	0	No.	+°C	kg	guaru		guaru				mm	Model	Ref. no.	
1 Phase r	notor, 230 Vo	olt / 50 Hz	z, capacito	or motor, p	rotectio	n to IP 5	5											
910	14200	0.60	230	2.6	25	965	40	40.0	HQW 710/6 ¹⁾	5047	—	—	—	—	—	MWS 5 ⁴⁾	1949	
3 Phase r	notor, 400 Vo	olt / 50 Hz	z, squirrel	cage moto	or prote	ction to I	P 55											
690	13330	0.29	400	0.9	20	469	40	57.0	HQD 710/8 ¹⁾	5599	AVD DK 710/8 ¹⁾	5251	HRFD 710/8 ¹⁾	6930	95	RDS 2 ⁴⁾	1315	
940	15560/19170	1.1*	230/400	5.1*	35	499	40	60.0	HQD 710/6 ¹⁾	5603	AVD DK 710/6 ¹⁾	5255	HRFD 710/6 ¹⁾	6934	135	RDS 7 ⁴⁾	1578	
1445	26420	3.00*	400/690	6.2*	30	776	40	88.0	HQD 710/4 ²⁾	5606	AVD DK 710/4 ²⁾	5258	HRFD 710/4 ²⁾	6937	180	—	—	
Two-spee	ed, 3 ph., 400) V, 50 Hz,	, protectio	n to IP 55														
730/890	13550/16090	0.4/0.75*	400/400	1.1/2.3*	25	520	40	55.0	HQD 710/6/6 ³⁾	5602	AVD DK 710/6/6 ³⁾	5254	HRFD 710/6/6 ³⁾	6933	95	RDS 4 ⁴⁾	1316	
1120/1360	16140/19670	0.95/1.55*	400/400	2.4/4.2*	20	520	40	60.0	HQD 710/4/4 ³⁾	5604	AVD DK 710/4/43	5256	HRFD 710/4/4 ³⁾	6935	135	RDS 7 ⁴⁾	1578	
1030/1340	19370/23280	1.5/2.2*	400/400	3.0/5.2*	26	520	40	75.0	HQD 710/4/4 ³⁾	5605	AVD DK 710/4/4 ³	5257	HRFD 710/4/4 ³⁾	6936	180	RDS 7 ⁴⁾	1578	
2 speed r	notor, pole-s	witching,	, Dahlande	er winding:	s, 400 V	olt, 50 H	z, protec	tion to IF	P 54									
685/1430	10810/22090	0.5/2.0*	400/400	2.0/4.7	23	471	40	82.0	HQD 710/8/4/	5611	AVD DK 710/8/4/	5263	HRFD 710/8/4/	6942	180	PDA 12 ⁵⁾	5081	
720/1440	14155/29020	0.9/3.6*	400/400	2.9/8.3	30	471	40	108.0	HQD 710/8/4/	5612	AVD DK 710/8/4/	5264	AVD RK 710/8/4/.	. 6943	210	PDA 12 ⁵⁾	5081	
Explosion	n proof Ex e l	ll, 3 ph., 4	00 Volt, 5	0 Hz, prote	ction to	IP 55, te	emp. clas	s T1-T3										
700	10450	0.55*	400	2.2*	35	470	40	68.0	HQD 710/8 Ex	5618	AVD DK 710/8 Ex	5270	HRFD 710/8 Ex	6948	125	not peri	nitted	
930	13480	0.55*	400	1.8*	25	470	40	67.0	HQD 710/6 Ex	5620	AVD DK 710/6 Ex	5272	HRFD 710/6 Ex	6949	95	not peri	nitted	
930	16770	0.95*	400	2.7*	35	470	40	77.0	HQD 710/6 Ex	5621	AVD DK 710/6 Ex	5273	HRFD 710/6 Ex	6950	135	not peri	nitted	
1420	20540	2.00*	400	4.7*	25	470	40	82.0	HQD 710/4 Ex	5623	AVD DK 710/4 Ex	5275	AVD RK 710/4 Ex	6951	180	not peri	nitted	
1420	26160	3.60*	400/690	8.1*	35	498	40	102.0	HQD 710/4 Ex	5624	AVD DK 710/4 Ex	5276	AVD RK 710/4 Ex	6952	200	not peri	nitted	
*) Nominal	motor amounts	s, Ex see ir	nfo p. 16.	¹⁾ to ³⁾ fu	ll motor	proteciton	unit, see	"Motor p	rotection" desc.	**) We	ights apply for type .	.DK and	IRK, HRF and HQ	less app	rox. 15 kg	. 4) Incl.	full motor	protection.

Accessories for HRF / AVD RK Description see page 230 on

2 515 1

ш

9Ż0

980

Mounting ring for vertical mounting **MRV 710** No. 1743

670

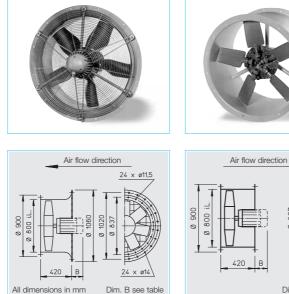

2 Mounting feet 1 x MK 710

(= 2 pcs.) No. 1372

••

65

••



L	Information	Page	Other accessories	Page
L	Techn. description Selection chart	140 141	^{b)} Accessories for expl proof fans	osion
	Information for planni Made to order desig Alternative voltages,	gns	Flanged flexible conn Type STS 710 Ex Ref.	
	classes, air flow directemperature, acid processes aluminium impelavailable on request.	tion, air flow dection and	Attenuators Shutter and grilles Speed controllers and switches	434 on 487 on 525 on

Electronic co steples Frequency i with Sine	ss nverter	Vibration dampers nominal size					
Model	Ref. no.	Model	Ref. no.				
—	—	1/1	1452/1454				
ESD 5 ⁴⁾	0501	1/1	1452/1454				
ESD 11,5 ⁴⁾	0502	1/1	1452/1454				
FU-BS 8,04	5461	2/2	1453/1455				
ESD 5 ⁴⁾	0501	1/1	1452/1454				
ESD 5 ⁴⁾	0501	1/1	1452/1454				
ESD 11,5 ⁴⁾	0502	1/2	1452/1455				
—	—	2/2	1453/1455				
—	—	2/2	1453/1455				
not perm	itted	1/2	1452/1455				
not perm	itted	1/2	1452/1455				
not perm		1/2	1452/1455				
not perm	itted	2/2	1453/1455				
not perm	itted	2/2	1453/1455				

Helios

5) see switch product page for flush mounted version.

Specification for all models Casing

With motor support manufactured from galvanised sheet steel

Impeller

Highly efficient, profiled blade impeller, dynamically balanced and manufactured from impact resistant polymers. Suitable for -30 to +60 °C. Deviation for exmodels.

Pitch angle

The impeller blades are adjustable for the optimal coverage of the operating point (except explosion proof). The pitch angle is set at the factory (according to the order) and fixed. The motor allocation takes place using the maximum power pursuant to the information in the table below. The specified pitch angle shown for each motor must not be exceeded

Motor

AVD DK

Totally enclosed motor protected to IP 55. Maintenance-free and interference-free. Humidity protection of tropicalized windings. Deviation for ex-models.

Motor protection

All models (except pole switching and explosion proof) have thermal contacts or PTC thermistors and according to footnotes in the table to protect through the following full motor protection units: ⁴⁾MSA, Ref. no. 1289

(for PTC thermistor temp. sens) ⁵⁾M4, Ref. no. 1571 All other models have to be protected by a conventional circuit breaker on site.

Electrical connection

Terminal box protected to IP 54 mounted on motor.

Guard

AVD RK

According to DIN EN ISO 13857, hot-dip galvanised, as standard for AVD DK.

Dim. B see table

Speed control

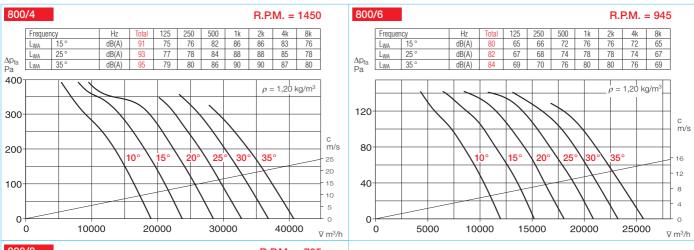
Partial through voltage reduction, see the "transformer controller" column. Regulated performance curve upon request. Possible allocations of frequency inverters for all types (except pole-switch and ex-proof). The planned use of a frequency inverter without Sine filter must be stated when ordering. This requires a change of fan design and potential additional costs.

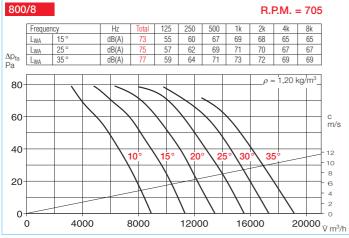
Reversed operation

All models are reversible when wired to a reversing switch. For reverse air flow direction allow a loss in performance of approx. 1/3.

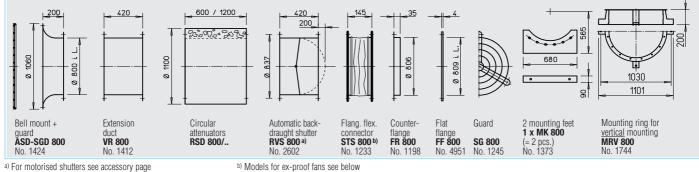
Installation

Installation in any position. Ensure that the motor drainage holes face downwards.


Dimensions

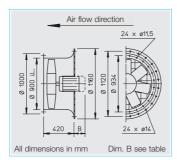

Pole-switch and explosion proof models may deviate from the adjacent information. Motor build lengths vary. Note dimension B projection.

Sound levels


The sound power levels are specified through the frequency and as sum levels above the characteristic curves. Deviation for ex-models.

R.P.M.	Air flow	Motor	Voltage	Power con.	max.	Wiring	max. air	Weight		Мо	del			Transformer		
	volume (FID)	power (nominal)*		nom. volt.*	pitch an- gle	diagram	flow temp.	net	incl.	Ref. no.	AVD RK	Ref. no.	motor projection	for 5 s pole sv		
min ⁻¹	V m³∕h	kW	V	А	0	No.	+°C	kg	guard				mm	Model	Ref. no.	
Three phas	e, 50 Hz, squirre	I-cage motor	r, protection	n to IP 54												
1445	33450	4.00*	400/690	8.3*	26	776	40	101	AVD DK 800/4/4)	5311	AVD RK 800/4/4)	6960	210	—	—	
1450	39130	5.5*	400/690	11*	33	776	40	115	AVD DK 800/4/4)	5312	AVD RK 800/4/4)	6961	290	—	—	
Two-speed,	3 ph., 400 V, 50 l	Hz, protection	n to IP 55													
775/920	15720/18670	0.40/0.75*	400/400	1.1/2.3*	22	520	40	70	AVD DK 800/6/6/5)	5307	AVD RK 800/6/6/ ⁵⁾	6956	125	RDS 4 ²⁾	1316	
Pole-switch	nable, 2-speed, 3	3 ph., 50 Hz, j	protection t	to IP 54										Pole switch	า	
695/1400	10020/20180	0.37/1.50*	400/400	1.3/3.7*	25	471	40	95	AVD DK 800/8/4/ ¹⁾	5319	AVD RK 800/8/4/ ¹⁾	6968	135	PDA 12 ³⁾	5081	
Explosion p	roof Ex e II, 3 pl	n., 50 Hz, pro	tection to I	P 55, temp.	class T1-	T3										
700	17190	0.55*	400	2.2*	32	470	40	81	AVD DK 800/8 Ex/	5326	AVD RK 800/8 Ex/	6974	135	not peri	nitted	
930	20340	0.95*	400	2.7*	23	470	40	90	AVD DK 800/6 Ex/	5329	AVD RK 800/6 Ex/	6976	135	not peri	nitted	
950	26710	1.9*	400	4.7*	35	470	40	118	AVD DK 800/6 Ex/	5330	AVD RK 800/6 Ex/	6977	210	not peri	nitted	
1420	31900	3.60*	400/690	8.1*	24	498	40	115	AVD DK 800/4 Ex/	5332	AVD RK 800/4 Ex/	6978	210	not peri	nitted	
1450	36820	5.00*	400/690	10.1*	30	498	40	143	AVD DK 800/4 Ex/	5333	AVD RK 800/4 Ex/	6979	290	not peri	nitted	
*) Nominal mo	otor amounts, Ex s	ee info p. 16.	¹⁾ Dahlan	der winding.	2) Incl full m	iotor protec	tion.	3) see switch	n produc	t page for flush mounted	d versior	1.			

Accessories for AVD RK Description see page 230 on



			n dampers			
		nominal size				
with Sine	iverter filter	SDD/SDZ				
Model	Ref. no.	Model	Ref. no.			
FU-BS 10 ²⁾	5462	2/2	1453/1455			
FU-BS 14 ²⁾	5463					
ESD 5 ²⁾	0501	2/2	1453/1455			
—	—	2/2	1453/1455			
not permi	tted	2/2	1453/1455			
not permi	tted	2/2	1453/1455			
not permi	tted	2/2	1453/1455			
not permi	tted	2/2	1453/1455			
not permi	tted	2/2	1453/1455			
	steples Frequency ir with Sine 1 Model FU-BS 10 ²⁾ FU-BS 14 ²⁾ ESD 5 ²⁾ — not permi not permi not permi not permi	FU-BS 10 ²) 5462 FU-BS 14 ²) 5463	stepless nomin Frequency inverter SDD / SDZ Model Ref. no. Model FU-BS 10 ²⁾ 5462 2/2 FU-BS 14 ²⁾ 5463 2/2 ESD 5 ²⁾ 0501 2/2 not permitted 2/2 2/.2 not permitted 2/2 2/.2 not permitted 2/2 2/2			

4) and 5) full motor protection, see description "Motor protection".

Information	Page	Other accessories	Page
Techn. description	140		
Selection chart	141	^{b)} Accessories for expl	osion
Information for planning	10 on	proof fans	
Made to order designs Alternative voltages, proto classes, air flow direction	, air flow	Flanged flexible conne Type STS 800 Ex Ref. r	
temperature, acid protect		Attenuators	434 on
cast aluminium impellers available on request.	are	Shutter and grilles Speed controllers	487 on
Note the technical inform page 15 on.	ation on	and switches	525 on

Pitch angle

models.

Casing

steel

Impeller

The impeller blades are adjustable for the optimal coverage of the operating point (except explosion proof). The pitch angle is set at the factory (according to the order) and fixed. The motor allocation takes place using the maximum power pursuant to the information in the table below. The specified pitch angle shown for each motor must not be exceeded.

Specification for all models

With motor support manufac-

Highly efficient, profiled blade

impeller, dynamically balanced

and manufactured from impact

resistant polymers. Suitable for

-30 to +60 °C. Deviation for ex-

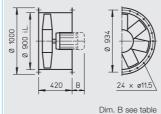
tured from galvanised sheet

Motor

Totally enclosed motor protected to IP 55. Maintenance-free and interference-free. Humidity protection of tropicalized windings. Deviation for ex-models.

Motor protection

All models (except pole switching and explosion proof) have thermal contacts or PTC thermistors and according to footnotes in the table to protect through the following full motor protection units: 4)MSA, Ref. no. 1289


(for PTC thermistor temp. sens) ⁵⁾M4, Ref. no. 1571 All other models have to be pro-

tected by a conventional circuit breaker on site.

Electrical connection

Terminal box protected to IP 54 mounted on motor.

Guard

AVD RK

According to DIN EN ISO 13857, hot-dip galvanised, as standard for AVD DK.

Speed control

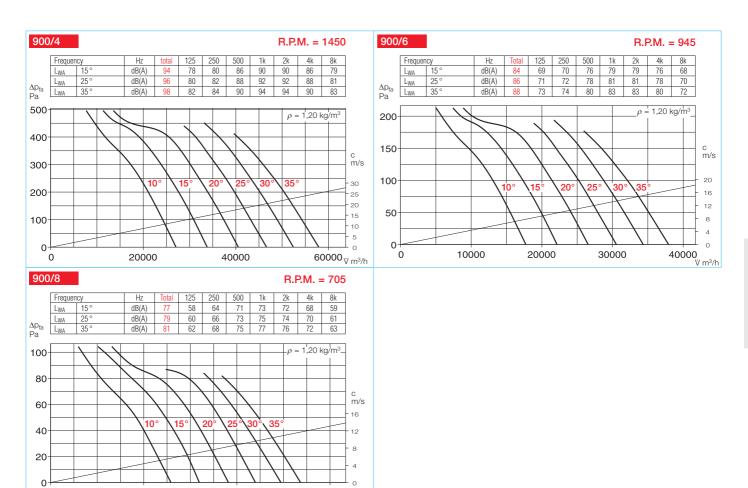
Partial through voltage reduction, see the "transformer controller" column. Regulated performance curve upon request. Possible allocations of frequency inverters for all types (except pole-switch and ex-proof). The planned use of a frequency inverter without Sine filter must be stated when ordering. This requires a change of fan design and potential additional costs.

Reversed operation

All models are reversible when wired to a reversing switch. For reverse air flow direction allow a loss in performance of approx. 1/3.

Installation

Installation in any position. Ensure that the motor drainage holes face downwards.

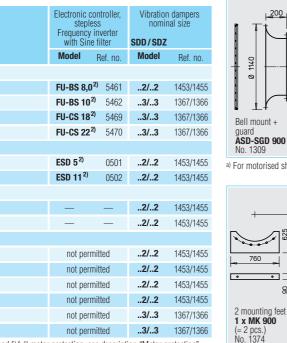

Dimensions

Pole-switch and explosion proof models may deviate from the adjacent information. Motor build lengths vary. Note dimension B projection.

Sound levels

The sound power levels are specified through the frequency and as sum levels above the characteristic curves. Deviation for ex-models.

R.P.M.	Air flow	Motor	Voltage	Power con.	max.	Wiring	max. air	Weight	Model				Dim. B	Transformer		
	volume (FID)	power (nominal)*		nom. volt.*	pitch an- gle	diagram	flow temp.	net	incl.	Ref. no.	AVD RK	Ref. no.	motor projection	for 5 s pole s		
min ⁻¹	∀ m³/h	kW	V	А	0	No.	+°C	kg	guard				mm	Model	Ref. no.	
Three phas	e, 50 Hz, squirre	I-cage moto	r, protection	n to IP 54												
950	37300	3.00*	400/690	6.2*	34	776	40	130	AVD DK 900/6/4)	5369	AVD RK 900/6/4)	6985	290	—	—	
1445	35030	4.00*	400/690	8.3*	16	776	40	118	AVD DK 900/4/4)	5370	AVD RK 900/4/4)	6986	210	—	—	
1450	48995	7.50*	400/690	14.5*	27	776	40	142	AVD DK 900/4/ ⁴⁾	5371	AVD RK 900/4/ ⁴⁾	6987	325	—	—	
1470	57720	11.00*	400/690	20.0*	34	776	40	186	AVD DK 900/4/4)	5372	AVD RK 900/4/4)	6988	385	—	—	
Two-speed	, 3 ph., 400 V, 50	Hz, Y/ $ riangle$ sw	itch, protec	tion to IP 5	5											
755/930	18390/22660	0.71/1.32*	400/400	2.1/4.0*	19	520	40	90	AVD DK 900/6/6/5	5367	AVD RK 900/6/6/5)	6983	180	RDS 7 ²⁾	1578	
770/920	25990/31060	1.38/2.37*	400/400	3.9/7.1*	27	520	40	115	AVD DK 900/6/6/5	5368	AVD RK 900/6/6/5)	6984	210	RDS 11 ²⁾	1332	
Pole-switch	hable, 2-speed, 3	3 ph., 50 Hz,	protection 1	to IP 54										Pole switc	h	
700/1435	18270/37450	1.10/4.50*	400/400	2.9/9.6*	18	471	40	120	AVD DK 900/8/4/ ¹⁾	5379	AVD RK 900/8/4/ ¹⁾	6995	290	PDA 12 ³⁾	5081	
715/1450	22390/45410	1.80/6.50*	400/400	5.7/14.5*	24	471	40	148	AVD DK 900/8/4/ ¹⁾	5380	AVD RK 900/8/4/ ¹⁾	6996	325	PDA 25 ³⁾	5060	
Explosion p	proof Ex e II, 3 pl	h., 50 Hz, pro	tection to I	P 55, temp.	class T1-	-T3										
700	24470	0.95*	400	2.8*	27	470	40	110	AVD DK 900/8 Ex/	5386	AVD RK 900/8 Ex/	6899	180	not per	mitted	
725	28470	1.3*	400	3.9*	34	470	40	130	AVD DK 900/8 Ex/	5387	AVD RK 900/8 Ex/	6900	210	not per	mitted	
950	30550	1.90*	400	4.7*	25	470	40	135	AVD DK 900/6 Ex/	5389	AVD RK 900/6 Ex/	6901	210	not per	mitted	
960	38040	3.50*	400/690	7.4*	35	498	40	160	AVD DK 900/6 Ex/	5390	AVD RK 900/6 Ex/	6902	290	not per	mitted	
1450	46630	6.80*	400/690	13.6*	25	498	40	175	AVD DK 900/4 Ex/	5392	AVD RK 900/4 Ex/	6903	325	not per	mitted	
1465	55240	10.00*	400/690	19.8*	32	498	40	235	AVD DK 900/4 Ex/	5393	AVD RK 900/4 Ex/	6904	385	not per	mitted	
*) Nominal mo	otor amounts, Ex s	ee info p. 16.	1) Dahlan	der winding.	2) Incl full m	otor protec	ction.	3) see switc	h produc	t page for flush mounte	d versio	n.			



Accessories for AVD RK Description see page 230 on

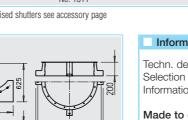
420

900 / 1800

30000 _{V m³/h}

0

10000


2020-2020 Ø 900 i L. Ø 1140 1220 0 Bell mount + Extension Circular guard ASD-SGD 900 attenuators duct **VR 900** RSD 900/... No. 1311 No. 1309 a) For motorised shutters see accessory page Tec لم ال į۲ Sele 625 Info - İ 760

•

8

200

20000

1130

1201

Mounting ring for vertical mounting MRV 900

No. 1745

b) Models for ex-proof fans see below

Automatic back-

draught shutter

BVS 900 a)

Nr. 2603

420

Ø 934

250

Information	Page	Other accessories	Page
Techn. description Selection chart	140 141	^{b)} Accessories for explo proof fans	osion
Information for planning	10 on	Flanged flexible conne	
Made to order designs Alternative voltages, prote	ection	Type STS 900 Ex Ref. r	10. 2512
classes, air flow direction,		Attenuators	434 on
temperature, acid protect		Shutter and grilles	487 on
cast aluminium impellers	are	Speed controllers	
available on request.		and switches	525 on

145

Flang. flex

connector STS 900 b)

Nr. 1234

35

Ø 903

Counter

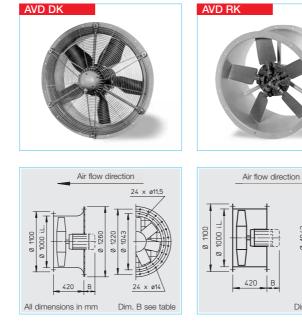
flange FR 900 Nr. 1199

4

Ø 909 i L.

Flat

flange FF 900


Nr. 4952

Guard

SG 900

Nr. 1246

Axial and VAR fans

Specification for all models Casing

With motor support manufactured from galvanised sheet steel.

Impeller

Highly efficient, profiled blade impeller, dynamically balanced and manufactured from impact resistant polymers. Suitable for -30 to +60 °C. Deviation for exmodels.

Pitch angle

The impeller blades are adjustable for the optimal coverage of the operating point (except explosion proof). The pitch angle is set at the factory (according to the order) and fixed. The motor allocation takes place using the maximum power pursuant to the information in the table below. The specified pitch angle shown for each motor must not be exceeded.

Motor

Totally enclosed motor protected to IP 55. Maintenance-free and interference-free. Humidity protection of tropicalized windings. Deviation for ex-models.

Motor protection

All models (except pole switching and explosion proof) have thermal contacts or PTC thermistors and according to footnotes in the table to protect through the following full motor protection units: ⁴⁾MSA, Ref. no. 1289

(for PTC thermistor temp. sens) ⁵⁾M4, Ref. no. 1571 All other models have to be protected by a conventional circuit breaker on site.

Electrical connection

Terminal box protected to IP 54 mounted on motor.

Guard

According to DIN EN ISO 13857, hot-dip galvanised, as standard for AVD DK.

Dim. B see table

Speed control

Partial through voltage reduction, see the "transformer controller" column. Regulated performance curve upon request. Possible allocations of frequency inverters for all types (except pole-switch and ex-proof). The planned use of a frequency inverter without Sine filter must be stated when ordering. This requires a change of fan design and potential additional costs.

Reversed operation

All models are reversible when wired to a reversing switch. For reverse air flow direction allow a loss in performance of approx. 1/3.

Installation

Installation in any position. Ensure that the motor drainage holes face downwards.

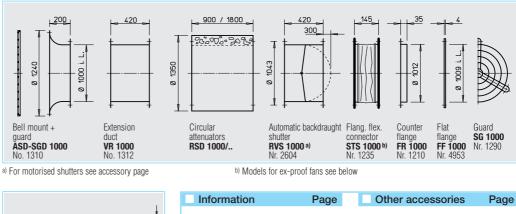
Dimensions

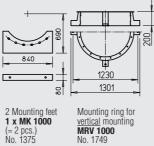
Pole-switch and explosion proof models may deviate from the adjacent information. Motor build lengths vary. Note dimension B projection.

Sound levels

The sound power levels are specified through the frequency and as sum levels above the characteristic curves. Deviation for ex-models.

R.P.M.	Air flow	Motor	Voltage	Power con.	max.	Wiring	max. air	Weight		Мо	del		Dim. B	Transformer		
	volume (FID)	power (nominal)*		nom. volt.*	pitch an- gle	diagram	flow temp.	net	AVD DK incl. guard	Ref. no.	AVD RK	Ref. no.	motor projection	for 5 s pole sv		
min ⁻¹	V m³∕h	kW	V	А	0	No.	+°C	kg	guaru				mm	Model	Ref. no.	
Three phase	e, 50 Hz, squirre	I-cage moto	r, protectio	n to IP 54												
950	39720	3.0*	400/690	6.2*	23	776	40	120	AVD DK 1000/6/4)	5398	AVD RK 1000/6/4)	5573	290	—	—	
955	46320	4.0*	400/690	9.2*	29	776	40	127	AVD DK 1000/6/4)	5399	AVD RK 1000/6/4)	5574	325	—	—	
955	52450	5.5*	400/690	12.4*	35	776	40	145	AVD DK 1000/6/4)	5400	AVD RK 1000/6/4)	5575	325	—	—	
1470	61460	11.0*	400/690	20.0*	23	776	40	160	AVD DK 1000/4/4)	5401	AVD RK 1000/4/4)	5576	385	_	—	
1470	71290	15.0*	400/690	26.0*	29	776	40	195	AVD DK 1000/4/4)	5402	AVD RK 1000/4/4)	5577	430	_	—	
1475	79440	18.5*	400/690	35.0*	34	776	40	210	AVD DK 1000/4/4)	5403	AVD RK 1000/4/4)	5578	465	—	—	
Pole-switch	able, 2-speed, 3	ph., 50 Hz,	protection	to IP 54										Pole switch	ו	
715/1440	27410/55210	2.2/9.0*	400/400	7.2/19.0*	20	471	40	165	AVD DK 1000/8/4/1	5407	AVD RK 1000/8/4/1)	5582	385	PDA 25 ³⁾	5060	
715/1445	32325/65330	3.0/12.0*	400/400	9.4/25.0*	26	471	40	190	AVD DK 1000/8/4/1	5408	AVD RK 1000/8/4/ ¹⁾	5583	415	PDA 63 ³⁾	1283	
Explosion p	roof Ex e II, 3 pl	n., 50 Hz, pro	tection to l	P 55, temp.	class T1-	T3										
955	43180	3.5*	400/690	7.4*	26	498	40	130	AVD DK 1000/6 Ex/.	5415	AVD RK 1000/6 Ex/	5590	325	not perr	nitted	
960	52730	6.6*	400/690	13.4*	35	498	40	155	AVD DK 1000/6 Ex/.	5416	AVD RK 1000/6 Ex/	5591	400	not perr	nitted	
1480	70160	15.0*	400/690	27.5*	28	498	40	200	AVD DK 1000/4 Ex/.	5417	AVD RK 1000/4 Ex/	5592	430	not perr	nitted	
1470	77600	17.5*	400/690	33.0*	33	498	40	225	AVD DK 1000/4 Ex/.	5418	AVD RK 1000/4 Ex/	5593	470	not perr	nitted	
*) Nominal mo	otor amounts, Ex se	e info p. 16.	¹⁾ Dahlan	der winding.	2) Incl full m	otor protec	tion.	3) see switc	h produc	t page for flush mounted	d version				


∜ m³/h


Accessories for AVD RK Description see page 230 on

Electronic co steple Frequency with Sine	ss inverter		n dampers nal size
Model	Ref. no.	Model	Ref. no.
FU-BS 8,0 ²	2) 5461	2/2	1453/1455
FU-BS 10,0)²⁾ 5462	2/2	1453/1455
FU-BS 10,0)²⁾ 5462	2/2	1453/1455
FU-CS 22 ²) 5470	3/3	1367/1366
FU-CS 32 ²) 5471	3/3	1367/1366
FU-CS 40 ²) 5472	3/3	1367/1366
—	—	3/3	1367/1366
—	—	3/3	1367/1366
not perm	nitted	2/2	1453/1455
not perm	nitted	2/2	1453/1455
not perm	nitted	3/3	1367/1366
not perm	nitted	3/3	1367/1366

Helios

⁴⁾ and ⁵⁾ full motor protection, see description "Motor protection".

Information	Page	Other accessories	Page
Techn. description Selection chart Information for planning	140 141 10 on	^{b)} Accessories for explo proof fans Flanged flexible conne	
Made to order designs Alternative voltages, prote	ection	Type STS 1000 Ex Ref.	no. 2513
classes, air flow direction temperature, acid protect cast aluminium impellers	ion and	Attenuators Shutter and grilles Speed controllers	434 on 487 on
available on request.		and switches	525 on

Medium-pressure axial fans. High-performance for a variety of areas of application.

INNOVATIVE

ENERGY-EFFICIENT

UNIVERSAL

With capacities of up to 32 000 m³/h and very high pressures of up to 1400 Pa, the range of medium-pressure axial fans is ideally suited to the requirements of professional ventilation technology. Universal installation possibilities (horizontal and vertical positioning) allow for flexible use in a number of areas of application.

THE NEW AMD/AMW: Innovative axial impeller and a new type of guide wheel.

The well-known and triedand-tested range with adjustable vanes was enhanced by the AMD / AMW with diameters from 225 to 400 mm with motors with controllable voltages in three-phase and direct current and a fixed pitch angle.

The new, optimally tailored system, consisting of a polymer impeller with perfectly integrated inflow geometry, a new type of guide wheel with maximal pressure recovery and specially coordinated motors ensure an optimal degree of efficiency.

In the AMD/AMW, a product was created that fulfills the maximum physical demands.

This has enormous benefits:

- High pressures and volumes with the smallest of dimensions.
- Minimal noise.
- Minimal energy costs with maximum performance.
- Maximum pressure recovery thanks to the new guide wheel.
- Very little residual spin.
- Low impact and outlet losses.

The entire AMD range with over 300 types in 12 sizes (NG 315–1120) and volume > 113 000 m³/h is included in a separate catalogue.

Includes B AMD types for machine-based smoke extraction systems (MRA) in temperature classes F300 and F400 as well as assembly kits for two-level series Z or parallel P designs.

This information supplements the "General technical information".

Features

The new AMD/AMWs are a range of medium-pressure fans with a compact design and excellent power density in relation to their size. The new axial impeller with optimised pressure and efficiency achieves an optimal degree of efficiency, high pressure and large volume conveyed in conjunction with the fixed guide wheel.

Casing

Duct casing on both sides with flanges in accordance with DIN 24155 page 3 with integrated guide wheel and motor mount made of galvanised steel. Terminal box on the outside of the duct.

Impeller

Polymer axial impeller with 14 spatially curved vanes and inflow geometry perfectly integrated into the impeller. Maximum pressure recovery in combination with the new guide wheel, a high degree of efficiency, low noise during operation, high corrosion-resistance, low-vibration operation thanks to dynamic balancing in accordance with DIN ISO 1940 T.1 – grade 6.3.

Air flow temperatures

The standard design can be used in the range of -30 to at least +40 °C. See the product page for information. An approval for higher long-term temperatures is possible upon request.

Airflow direction

The airflow direction cannot be changed, but it is defined by the method of installation. The correct motor rotation and airflow direction is marked with an arrow on the fan.

Installation position, mounting, condensation outlets

Given a length of 2.5 times the duct diameter and when placed in the middle of ducting, a corresponding straight section of ducting is required to achieve the stated performance values given unimpeded outflow of air (Figure 1). The ideal inflow of the fan is only guaranteed if a suction nozzle with sufficient free suction space or a straight line with the same diameter and length 2.5 times the diameter is placed upstream in the duct construction.

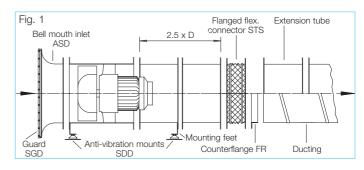
- ☐ The installation position and fastening should be designed so that the fan is free from deformation and can be securely fastened. AMD/AMW can be installed and operated in any chosen location. When dealing with equipment with condensate drain holes, their location must be chosen carefully.
- The fans must not be operated when in contact with water. When installed outdoors, effective weather protection must be ensured.
- For operation under difficult conditions, such as high humidity, excessive strain due to climatic, technical and electronic influences, approval for use must be requested and received, as the default design may not be suitable under certain circumstances.

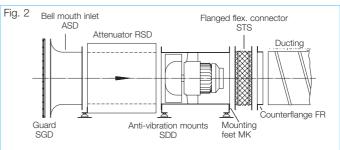
Positioning

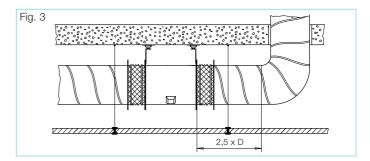
The use of vibration dampers is recommended to prevent the transfer of vibrations (accessories SDD, SDZ). Motors with a large construction size can protrude at the back and cause an uneven distribution due to their high weight. An extension tube (VR, accessories) is to be provided to find the centre of gravity!

Installation examples Horizontal

- Fig. 2

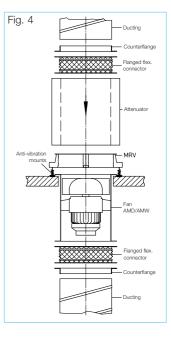

Free suction, pressure-side operation with an attenuator with an intermediate flange. To reduce the sound pressure on the suction or pressure side, corresponding ducting attenuator can be fitted with an intermediate flange.


Fig. 3 Hanging from the ceiling


Figure 3 shows the typical installation for use as ventilation technology. The installation of AMD/AMW systems on ceilings is possible by way of direct suspension using mounting brackets (MK) and vibration dampers (accessories SDD, SDZ). The ducting casing with flanges on both sides (according to DIN 24155 page 3) is designed for direct installation in the ducting.

VerticalFig. 4

Integrated in the ducting with attenuator on the intake-side. Mounting on the wall with brackets or through the ceiling. The elements are to be hung separately according to the



weight. Do not install the fan with load balancing when making changes. From a construction size of 315, mounting rings MRV are available for fitting the fan vertically. The weight of the fan including the attached accessories must not exceed the load bearing capacity of the MRV

Information	Page
Information for project plan	nning,
Acoustics	10 on
General techn. information	,
speed control	15 on

By combining the parameters of static pressure increase Δp_{fa} , air flow volume V, speed min⁻¹, sound pressure level dB(A) and impeller diameter

DN mm, the following table facilitates the selection of AMD/AMW high-pressure fans.

Diameter	R.P.M.	Sound pressure Intake	Air flow vo	Air flow volume V m ³ /h in relation to static pressure = N / m ² = freely available pressure											
mm	min ⁻¹	L _{PA} dB(A)	(Δp_{fa}) in P	Δp _{fa}) in Pa											
		at 4 m	0	25	50	75	100	150	200	300	400	500	600	700	800
225	2800	53	1950	1900	1860	1780	1720	1590	1400						
225	1400	38	950	840	710										
250	2800	56	2620	2550	2480	2410	2340	2180	1980						
250	1400	42	1360	1250	1080										
280	2800	59	3970	3910	3850	3760	3690	3540	3360	3020					
280	1400	44	1930	1810	1650	1450									
315	2800	63	5440	5360	5300	5240	5160	4970	4810	4450	4020				
315	1400	48	2870	2730	2590	2390	2210								
355	2800	68	8610	8540	8470	8390	8310	8140	7970	7600	7180	6760	6260	5490	
355	1400	52	4170	4040	3860	3660	3470	3070							
400	2800	73	12420	12330	12250	12160	12060	11870	11700	11310	10870	10420	9890	9260	8450
400	1400	56	6000	5810	5600	5400	5200	4740	3940						

Specification Casing

Manufactured in galvanised sheet steel with flanges on both sides to DIN 24155, Pt. 3. with fixed guide vanes and motor support.

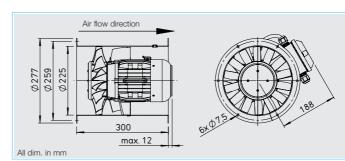
Impeller / guide vanes

Impeller with 3D profiled blades and integrated inflow geometry made from high quality polymers. Connected to an optimised guide vane made from galvanised steel. Impeller and guide vane efficiency and pressure optimised for high volume flows by means of CFD. Dynamically balanced according to DIN ISO 1940-1. Operating range -30 to +40 °C.

Motor

Direct driven, maintenance free flange motor, totally enclosed with an aluminium casing and cooling fins, protected to IP 54. Sealed for life ball bearings and interference-free. Optional drainage holes made to order (please state installation position). Optional tropicalized protection of windings with humidity protection waterproofing.

Speed control


The voltage-controllable models the current are marked by a value in the "regular power consumption" column of the table below which must be used when selecting a controller (see controller column). The air flow volumes can be seen from the characteristic curves. If the fan is to be controlled by a frequency inverter without a sine filter, this must be stated when ordering. This requires a change of fan design and potential additional costs.

Electrical connection

Terminal box fitted externally on the casing as standard (IP 55).

Installation

Installation in any position. Ensure that motor drainage holes (where used) face downwards.

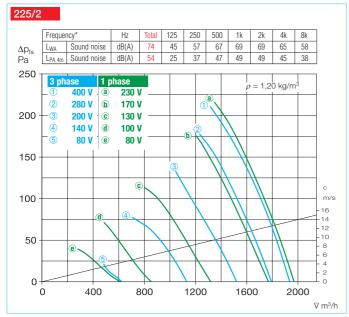
Motor protection

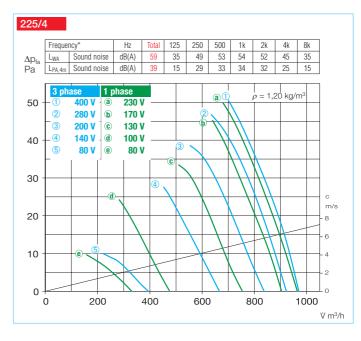
All models have thermal contacts as standard which must be connected to a full motor protection unit (see table below) for effective motor protection.

Sound levels

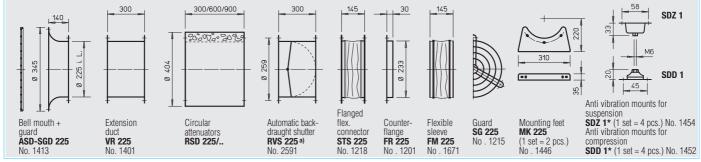
Data shown within the performance curves refers to sound power and pressure levels in 4 m free field conditions, for medium operating point intake/exhaust. Sound emission and acoustic information on page 10 on.

Information	Page
Selection chart	183
Information for planning	10 on


Made to order designs


Alternative voltages, frequencies, protection classes, acid protection, high temperatures etc. are available on request.

Other accessories	Page
Installation accessories	230 on
Attenuators	436 on
Switch and	
control technology	525 on


Туре	Ref. no.	R.P.M.	Air flow volume (FID)	Motor power	Voltage	standard	rrent speed controlled	Wiring diagram	Maximum a standard supply	ir flow temp. speed controlled	(neť)	5 step tra contr		with i	icy inverter ntegrated e filter
		min ⁻¹	V m³/h	kW	V	А	A	No.	+°C	+°C	kg	Туре	Ref. no.	Туре	Ref. no.
1 phase mo	tor, 50 Hz, p	rotection t	o IP 54												
AMW 225/4	2242	1425	965	0.6	230	0.3	0.3	966.1	60	40	8.7	MWS 1,	5 ¹⁾ 1947	-	-
AMW 225/2	2243	2750	1955	0.26	230	1.2	1.4	966.1	60	40	9	MWS 1,	5 ¹⁾ 1947	-	-
3 phase mo	tor, 50 Hz, p	rotection t	o IP 54												
AMD 225/4	2244	1430	960	0.6	400	0.2	0.25	469	60	40	8.3	RDS 1 ¹⁾	1314	-	-
AMD 225/2	2245	2760	1950	0.25	400	0.6	0.65	469	60	40	8.8	RDS 1 ¹⁾	1314	-	-

1) includes full motor protection device

* 3 phase motor sound information. 1 phase motor sound information see www.HeliosSelect.de

a) For motorised shutters see accessory pages

Helios

* Type allocation see table, last column

Full motor prote device for connect thermal conta	ction of	Compre	Vibration ssion	dampers Suspei	nsion
		Туре	Ref. no.	Type	Ref. no.
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-76-	
MW	1579	SDD 1	1452	SDZ 1	1454
MW	1579	SDD 1	1452	SDZ 1	1454
MD	5849	SDD 1	1452	SDZ 1	1454
MD	5849	SDD 1	1452	SDZ 1	1454

185

Specification Casing

Manufactured in galvanised sheet steel with flanges on both sides to DIN 24155, Pt. 3. with fixed guide vanes and motor support.

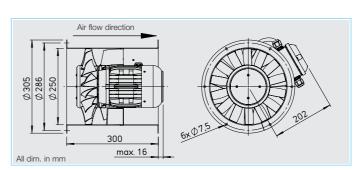
Impeller / guide vanes

Impeller with 3D profiled blades and integrated inflow geometry made from high quality polymers. Connected to an optimised guide vane made from galvanised steel. Impeller and guide vane efficiency and pressure optimised for high volume flows by means of CFD. Dynamically balanced according to DIN ISO 1940-1. Operating range -30 to +40 °C.

Motor

Direct driven, maintenance free flange motor, totally enclosed with an aluminium casing and cooling fins, protected to IP 54. Sealed for life ball bearings and interference-free. Optional drainage holes made to order (please state installation position). Optional tropicalized protection of windings with humidity protection waterproofing.

Speed control


The voltage-controllable models the current are marked by a value in the "regular power consumption" column of the table below which must be used when selecting a controller (see controller column). The air flow volumes can be seen from the characteristic curves. If the fan is to be controlled by a frequency inverter without a sine filter, this must be stated when ordering. This requires a change of fan design and potential additional costs.

Electrical connection

Terminal box fitted externally on the casing as standard (IP 55).

Installation

Installation in any position. Ensure that motor drainage holes (where used) face downwards.

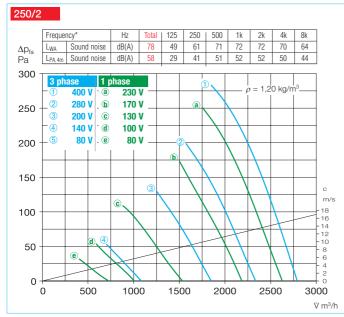
Motor protection

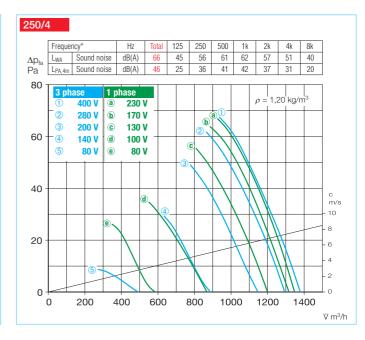
All models have thermal contacts as standard which must be connected to a full motor protection unit (see table below) for effective motor protection.

Sound levels

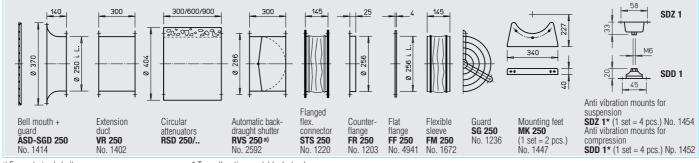
Data shown within the performance curves refers to sound power and pressure levels in 4 m free field conditions, for medium operating point intake/exhaust. Sound emission and acoustic information on page 10 on.

Information	Page
Selection chart	183
Information for planning	10 on


Made to order designs


Alternative voltages, frequencies, protection classes, acid protection, high temperatures etc. are available on request.

Other accessories	Page
Installation accessories	230 on
Attenuators	436 on
Switch and	
control technology	525 on


Туре	Ref. no.	R.P.M.	Air flow volume (FID)	Motor power	Voltage	standard	rrent speed controlled	diagram	Maximum a standard supply	ir flow temp. speed controlled	(net)	controll		Frequency with int sine f	egrated
		min ⁻¹	V m³/h	kW	V	А	А	No.	+°C	+°C	kg	Type Re	ef. no.	Туре	Ref. no.
1 phase mot	tor, 50 Hz, p	protection t	o IP 54												
AMW 250/4	2248	1435	1360	0.1	230	0.6	0.6	966.1	60	40	9	MWS 1,5 ¹⁾	1947	-	-
AMW 250/2	2249	2630	2620	0.4	230	1.9	1.9	966.1	60	40	9.5	MWS 3 ¹⁾	1948	-	-
3 phase mot	tor, 50 Hz, p	protection t	o IP 54												
AMD 250/4	2250	1430	1380	0.08	400	0.3	0.3	469	60	40	9.2	RDS 1 ¹⁾	1314	-	-
AMD 250/2	2251	2830	2790	0.43	400	1	1	469	60	40	11	RDS 2 ¹⁾	1315	FU-BS 2,5	5459

1) includes full motor protection device

* 3 phase motor sound information. 1 phase motor sound information see www.HeliosSelect.de

a) For motorised shutters see accessory pages

Helios

* Type allocation see table, last column

Full motor prote device for connect	ction of		Vibration		
thermal conta	acts	Compre	ession	Susper	ision
		Туре	Ref. no.	Туре	Ref. no.
MW	1579	SDD 1	1452	SDZ 1	1454
MW	1579	SDD 1	1452	SDZ 1	1454
MD	5849	SDD 1	1452	SDZ 1	1454
MD	5849	SDD 1	1452	SDZ 1	1454

Axial and VAR fans

Specification Casing

Manufactured in galvanised sheet steel with flanges on both sides to DIN 24155, Pt. 3. with fixed guide vanes and motor support.

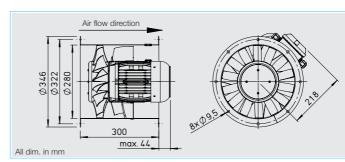
Impeller / guide vanes

Impeller with 3D profiled blades and integrated inflow geometry made from high quality polymers. Connected to an optimised guide vane made from galvanised steel. Impeller and guide vane efficiency and pressure optimised for high volume flows by means of CFD. Dynamically balanced according to DIN ISO 1940-1. Operating range -30 to +40 °C.

Motor

Direct driven, maintenance free flange motor, totally enclosed with an aluminium casing and cooling fins, protected to IP 54. Sealed for life ball bearings and interference-free. Optional drainage holes made to order (please state installation position). Optional tropicalized protection of windings with humidity protection waterproofing.

Speed control


The voltage-controllable models the current are marked by a value in the "regular power consumption" column of the table below which must be used when selecting a controller (see controller column). The air flow volumes can be seen from the characteristic curves. If the fan is to be controlled by a frequency inverter without a sine filter, this must be stated when ordering. This requires a change of fan design and potential additional costs.

Electrical connection

Terminal box fitted externally on the casing as standard (IP 55).

Installation

Installation in any position. Ensure that motor drainage holes (where used) face downwards.

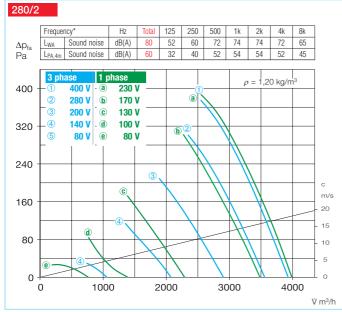
Motor protection

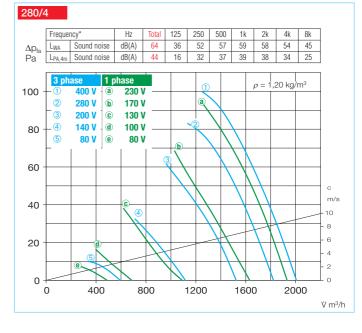
All models have thermal contacts as standard which must be connected to a full motor protection unit (see table below) for effective motor protection.

Sound levels

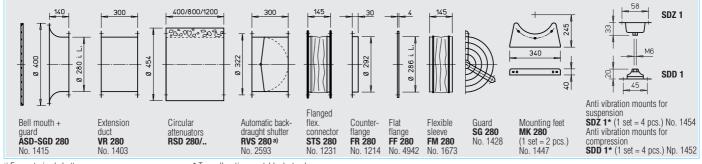
Data shown within the performance curves refers to sound power and pressure levels in 4 m free field conditions, for medium operating point intake/exhaust. Sound emission and acoustic information on page 10 on.

Information	Page
Selection chart	183
Information for planning	10 on


Made to order designs


Alternative voltages, frequencies, protection classes, acid protection, high temperatures etc. are available on request.

Other accessories	Page
Installation accessories	230 on
Attenuators	436 on
Switch and	
control technology	525 on


Туре	Ref. no.	R.P.M.	Air flow volume (FID)	Motor power	Voltage	standard	rrent speed controlled	Wiring diagram	Maximum a standard supply	ir flow temp. speed controlled	(net)	5 step tran contro		Frequency with int sine f	egrated
		min ⁻¹	V m³/h	kW	V	А	А	No.	+°C	+°C	kg	Туре	Ref. no.	Туре	Ref. no.
1 phase mot	tor, 50 Hz, p	protection t	o IP 54												
AMW 280/4	2254	1345	1930	0.1	230	0.5	0.5	966.1	60	40	11.5	MWS 1,5	¹⁾ 1947	-	-
AMW 280/2	2255	2755	3970	0.7	230	3.2	4.3	976.1	60	40	15.5	MWS 5 ¹⁾	1949	-	-
3 phase mot	tor, 50 Hz, p	protection t	o IP 54												
AMD 280/4	2256	1385	2000	0.1	400	0.3	0.3	469	60	40	10.5	RDS 1 ¹⁾	1314	-	-
AMD 280/2	2257	2745	3960	0.7	400	1.4	1.5	469	60	40	13.8	RDS 2 ¹⁾	1315	FU-BS 2,5	5459

1) includes full motor protection device

* 3 phase motor sound information. 1 phase motor sound information see www.HeliosSelect.de

^{a)} For motorised shutters see accessory pages

Helios

* Type allocation see table, last column

Full motor prot device for conne			Vibration	dampers	
thermal cont	acts	Compre	ession	Susper	nsion
		Туре	Ref. no.	Туре	Ref. no.
MW	1579	SDD 1	1452	SDZ 1	1454
MW	1579	SDD 1	1452	SDZ 1	1454
MD	5849	SDD 1	1452	SDZ 1	1454
MD	5849	SDD 1	1452	SDZ 1	1454

Specification Casing

Manufactured in galvanised sheet steel with flanges on both sides to DIN 24155, Pt. 3. with fixed guide vanes and motor support.

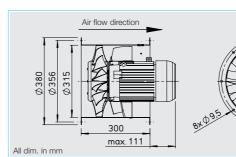
Impeller / guide vanes

Impeller with 3D profiled blades and integrated inflow geometry made from high quality polymers. Connected to an optimised guide vane made from galvanised steel. Impeller and guide vane efficiency and pressure optimised for high volume flows by means of CFD. Dynamically balanced according to DIN ISO 1940-1. Operating range -30 to +40 °C.

Motor

Direct driven, maintenance free flange motor, totally enclosed with an aluminium casing and cooling fins, protected to IP 54. Sealed for life ball bearings and interference-free. Optional drainage holes made to order (please state installation position). Optional tropicalized protection of windings with humidity protection waterproofing

Speed control


The voltage-controllable models the current are marked by a value in the "regular power consumption" column of the table below which must be used when selecting a controller (see controller column). The air flow volumes can be seen from the characteristic curves. If the fan is to be controlled by a frequency inverter without a sine filter, this must be stated when ordering. This requires a change of fan design and potential additional costs.

Electrical connection

Terminal box fitted externally on the casing as standard (IP 55).

Installation

Installation in any position. Ensure that motor drainage holes (where used) face downwards

Motor protection

Sound levels

10 on.

be connected to a full motor

for effective motor protection.

Data shown within the perform-

power and pressure levels in 4

um operating point intake/ex-

haust. Sound emission and

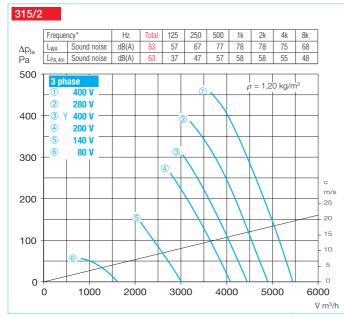
acoustic information on page

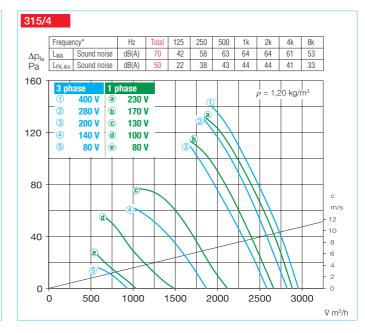
m free field conditions, for medi-

ance curves refers to sound

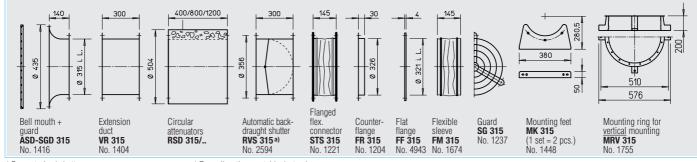
Information Page All models have thermal con-Selection chart tacts as standard which must Information for planning 10 on protection unit (see table below)

Made to order designs


Alternative voltages, frequencies, protection classes, acid protection, high temperatures etc. are available on request.


183

Other accessories	Page
Installation accessories	230 on
Attenuators	436 on
Switch and	
control technology	525 on


Туре	Ref. no.	R.P.M.	Air flow volume (FID)	Motor power	Voltage	Cu standard supply	rrent speed controlled	Wiring diagram	Maximum a standard supply	air flow temp. speed controlled	(net)	cont	ansformer roller	with	ncy inverter integrated ne filter
		min ⁻¹	V m³/h	kW	V	А	A	No.	+°C	+°C	kg	Туре	Ref. no.	Туре	Ref. no.
1 phase mo	otor, 50 Hz, j	protection t	o IP 54												
AMW 315/4	2265	1395	2860	0.2	230	1	1.1	966.1	60	40	13.1	MWS 1,	,5¹⁾ 1947	-	-
3 phase mo	otor, 50 Hz, j	protection t	o IP 54												
AMD 315/4	2266	1455	2950	0.2	400	0.6	0.6	469	60	40	12.2	RDS 1 ¹⁾	1314	-	-
Two-speed,	3 phase m	otor, 50 Hz,	Y/ \triangle wiring,	protection	to IP 54										
AMD 315/2/	/2 2267	2200/2650	7640/8610	0.7/1.1	400/400	1.6/2.5	2.3	520	60	40	18.5	RDS 4 ¹⁾	1316	FU-BS 5	,0 5460
1) includes full	I matar prata	ation davias													

1) includes full motor protection device

* 3 phase motor sound information. 1 phase motor sound information see www.HeliosSelect.de

a) For motorised shutters see accessory pages

Helios

* Type allocation see table, last column

device for c	protection onnection of contacts	Vibration dampers Compression Suspension								
		Туре	Ref. no.	Туре	Ref. no.					
MW	1579	SDD 1	1452	SDZ 1	1454					
MD	5849	SDD 1	1452	SDZ 1	1454					
M 4	1571	SDD 1	1452	SDZ 1	1454					

Axial and VAR fans

Specification Casing

Manufactured in galvanised sheet steel with flanges on both sides to DIN 24155, Pt. 3. with fixed guide vanes and motor support.

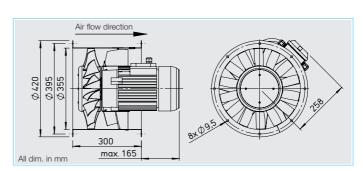
Impeller / guide vanes

Impeller with 3D profiled blades and integrated inflow geometry made from high quality polymers. Connected to an optimised guide vane made from galvanised steel. Impeller and guide vane efficiency and pressure optimised for high volume flows by means of CFD. Dynamically balanced according to DIN ISO 1940-1. Operating range -30 to +40 °C.

Motor

Direct driven, maintenance free flange motor, totally enclosed with an aluminium casing and cooling fins, protected to IP 54. Sealed for life ball bearings and interference-free. Optional drainage holes made to order (please state installation position). Optional tropicalized protection of windings with humidity protection waterproofing.

Speed control


The voltage-controllable models the current are marked by a value in the "regular power consumption" column of the table below which must be used when selecting a controller (see controller column). The air flow volumes can be seen from the characteristic curves. If the fan is to be controlled by a frequency inverter without a sine filter, this must be stated when ordering. This requires a change of fan design and potential additional costs.

Electrical connection

Terminal box fitted externally on the casing as standard (IP 55).

Installation

Installation in any position. Ensure that motor drainage holes (where used) face downwards.

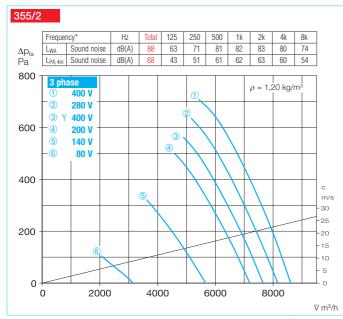
Motor protection

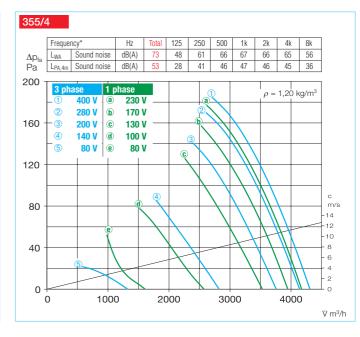
All models have thermal contacts as standard which must be connected to a full motor protection unit (see table below) for effective motor protection.

Sound levels

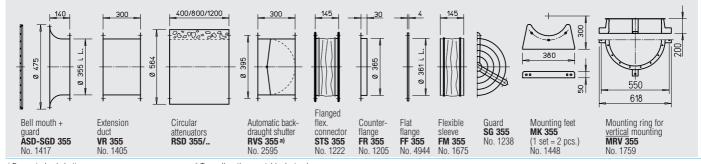
Data shown within the performance curves refers to sound power and pressure levels in 4 m free field conditions, for medium operating point intake/exhaust. Sound emission and acoustic information on page 10 on.

Information	Page
Selection chart	183
Information for planning	10 on


Made to order designs


Alternative voltages, frequencies, protection classes, acid protection, high temperatures etc. are available on request.

Other accessories	Page
Installation accessories	230 on
Attenuators	436 on
Switch and	
control technology	525 on


	/ inverter egrated filter
min ⁻¹ V m ³ /h kW V A A No. +°C +°C kg Type Ref. no. Type	Ref. no.
1 phase motor, 50 Hz, protection to IP 54	
AMW 355/4 2275 1430 4170 0.4 230 1.8 2.4 968.1 60 40 16.9 MWS 3 ¹) 1948 -	-
3 phase motor, 50 Hz, protection to IP 54	
AMD 355/4 2276 1445 4300 0.35 400 0.9 1.1 469 60 40 15.7 RDS 2 ¹⁾ 1315 FU-BS 2,5	5459
Two-speed, 3 phase motor, 50 Hz, Y/△ wiring, protection to IP 54	
AMD 355/2/2 2277 2200/2775 8610/7640 1.3 /2.3 400/400 3.0/5.4 5.6 520 60 40 30.3 RDS 7 ¹) 1578 FU-BS 8,0	5461

1) includes full motor protection device

* 3 phase motor sound information. 1 phase motor sound information see www.HeliosSelect.de

a) For motorised shutters see accessory pages

Helios

* Type allocation see table, last column

Full motor device for co thermal	onnection of	Vibration dampers Compression Suspension								
		Туре	Ref. no.	Туре	Ref. no.					
MW	1579	SDD 1	1452	SDZ 1	1454					
MD	5849	SDD 1	1452	SDZ 1	1454					
M 4	1571	SDD 1	1452	SDZ 1	1454					

Axial and VAR fans

Specification Casing

Manufactured in galvanised sheet steel with flanges on both sides to DIN 24155, Pt. 3. with fixed guide vanes and motor support.

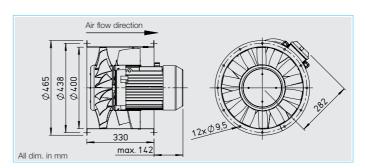
Impeller / guide vanes

Impeller with 3D profiled blades and integrated inflow geometry made from high quality polymers. Connected to an optimised guide vane made from galvanised steel. Impeller and guide vane efficiency and pressure optimised for high volume flows by means of CFD. Dynamically balanced according to DIN ISO 1940-1. Operating range -30 to +40 °C.

Motor

Direct driven, maintenance free flange motor, totally enclosed with an aluminium casing and cooling fins, protected to IP 54. Sealed for life ball bearings and interference-free. Optional drainage holes made to order (please state installation position). Optional tropicalized protection of windings with humidity protection waterproofing.

Speed control


The voltage-controllable models the current are marked by a value in the "regular power consumption" column of the table below which must be used when selecting a controller (see controller column). The air flow volumes can be seen from the characteristic curves. If the fan is to be controlled by a frequency inverter without a sine filter, this must be stated when ordering. This requires a change of fan design and potential additional costs.

Electrical connection

Terminal box fitted externally on the casing as standard (IP 55).

Installation

Installation in any position. Ensure that motor drainage holes (where used) face downwards.

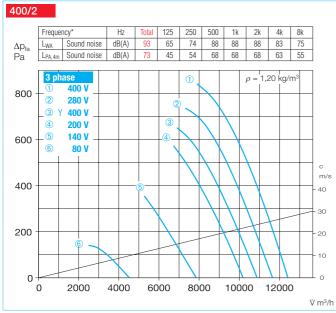
Motor protection

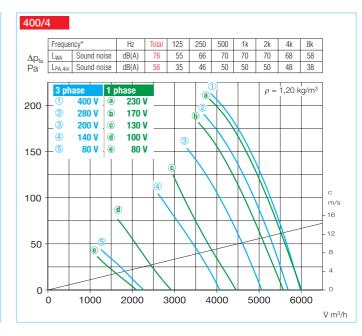
All models have thermal contacts as standard which must be connected to a full motor protection unit (see table below) for effective motor protection.

Sound levels

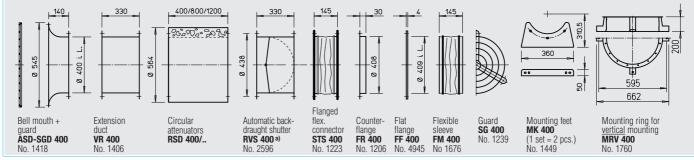
Data shown within the performance curves refers to sound power and pressure levels in 4 m free field conditions, for medium operating point intake/exhaust. Sound emission and acoustic information on page 10 on.

Information	Page
Selection chart	183
Information for planning	10 on


Made to order designs


Alternative voltages, frequencies, protection classes, acid protection, high temperatures etc. are available on request.

Other accessories	Page
Installation accessories	230 on
Attenuators	436 on
Switch and	
control technology	525 on


Туре	Ref. no.	R.P.M.	Air flow volume (FID)	Motor power	Voltage	Cur standard supply	rrent speed controlled	Wiring diagram	Maximum a standard supply	ir flow temp. speed controlled	(net)	5 step tran contro		Frequency with int sine f	egrated
		min ⁻¹	V m³/h	kW	V	А	А	No.	+°C	+°C	kg	Туре	Ref. no.	Туре	Ref. no.
1 phase m	otor, 50 Hz,	protection t	o IP 54												
AMW 400/	4 2280	1395	6000	0.6	230	2.6	3.1	967.1	60	40	23.2	MWS 5 ¹⁾	1949	-	-
3 phase m	otor, 50 Hz,	protection t	o IP 54												
AMD 400/4	2281	1420	5980	0.6	400	1.9	2	469	60	40	22	RDS 4 ¹⁾	1316	FU-BS 2,5	5459
Two-speed, 3 phase motor, 50 Hz, Y/ $ riangle$ wiring, protection to IP 54															
AMD 400/2	2/2 2282	2280/2780	10880/12430	2.4/4.4	400/400	5.5/9.5	9.5	520	50	30	44.9	RDS 11 ¹⁾	1332	FU-BS 14	5463

1) includes full motor protection device

* 3 phase motor sound information. 1 phase motor sound information see www.HeliosSelect.de

^{a)} For motorised shutters see accessory pages

Helios

* Type allocation see table, last column

	protection	Vibration dampers									
	contacts	Compre	ssion	Suspension							
		Туре	Ref. no.	Туре	Ref. no.						
MW	1579	SDD 1	1452	SDZ 1	1454						
MD	5849	SDD 1	1452	SDZ 1	1454						
M 4	1571	SDD 1	1452	SDZ 1	1454						

Solutions for technical building equipment. Helios TGA.

In addition to the series range, Helios Ventilators offers an extensive product portfolio for technical building equipment (TGA). In addition to the medium-pressure axial fans on the pages below, further ND and various fire gas fan series are available in the temperature classes F300, F400 and F600, as well as impulse fans. Modern control and regulation solutions ensure the efficient and safe operation. With smarter properties, for example, gas warning systems fulfil the strictest demands in terms of safety, performance and energy and cost efficiency. See separate catalogue or get in touch with local representation for details.

AXIAL AND RADAX[®] VAR FANS

For areas of application in smoke extraction with conveyance temperatures of 300 °C or 400 °C and 600 °C for 120 minutes (F300, F400, F600) or 40 °C for continuous ventilation operations, the Helios TGA range comprises axial low-pressure, medium-pressure and RADAX® VAR high-pressure in-line fans in ND 280 to 1000 mm with a volume of 2500 – 115 000 m³/h.

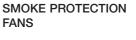
600 F600

IMPULSE FANS (JET FANS)

impulse fans are used in underground car parks for ventilation and exhaust air extraction and guarantee the extraction of smoke in the case of a fire.

Low-noise and with universal applications, the Helios axial impulse fans are setting benchmarks when it comes to thrust and weight. The centrifugal models have an impressive ultra-flat, compact and light design and are ideal for restricted spaces.

as nave 400 °C for at, (smoke ext asign tion). ricted



FIRE GAS ROOF AND

RECTANGULAR FANS

Fire gas roof fans are available with ND 315 to 710 mm with volumes of 3700 to 40 000 m³/h. They have DIBt application certificates and are CE-certified.

Fire gas rectangular fans for rectangular ducts and connections are ideally suited to areas of application with conveyor temperatures of 400 °C for 120 minutes (smoke extraction operation).

Smoke protection pressure systems (RDA) and stairway flush ventilation systems (TSA) ensure that stairways, fire-fighting lifts and the like remain free from smoke in order to save lives.

The RDA/TSA concept from Helios has a modular design. With preconfigured packages, the entire system is put together in just a few steps and adapted to the structural conditions and property requirements. This guarantees seamless planning, installation and commissioning, as well as the all-round safe operation <u>of the system.</u>

Fig. 1

Casing

- Duct casing with welded-in motor mounting plate and a guide wheel made of sheet steel.
 Flange pressed on both sides with DIN 24155 page 3 for direct placement of flanges in the middle of ducting.
- Surface protection through powder coating RAL 7015 (grey).

Impeller

- Hubs and vanes made of corrosion-resistant aluminium alloy.
- Dynamically balanced in accordance with DIN ISO 1940-1, grade 6.3 for low-vibration operation.
- Ten vanes with aerodynamic profiles work together with the guide wheel to achieve maximum efficiency and pressure.
- The pitch angle of the vanes can be factory pre-set according to the optimal bespoke operating point.

Motor

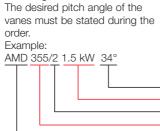
- A direct start connection is intended for single-speed fans with a three-phase motor and rated motor power of 3.00 kW, fans with rated motor power of 4.00 kW for the star-delta starting.
- Directly through an efficient IE 2 and IE3 three-phase standard motor. Pole-changeable fans with IEC standard motor. Degree of protection IP 55, insulation class F.

Speed control

Stepless (0–100 %) thanks to the use of a frequency inverter (excluding pole-changeable models). The planned use of a frequency inverter without sinus filter is to be stated when the contract is placed. It triggers a change of the fan design and added costs where applicable.

Motor protrusion

In some types, the motor extends beyond the casing. Protrusion measurement B in mm is to be observed according to the type table.


Motor protection

All AMD types have a PTC thermistor for motor protection as standard. This means that effective motor protection is possible using a full motor protection device (type MSA, Ref. no. 1289, accessory) or FU (accessory).

Electrical connection

Polymer terminal box (degree of protection IP 55) as standard, fitted on the outside of the fan casing.

Ordering data

Air flow temperatures

□ For ventilation and exhaust air extraction with long-term temperatures from -20 °C to +60 °C. Types for higher conveyor temperatures available upon request.

Airflow direction

□ The fans have a pressed design with airflow direction B = above the motor (Fig. 1).

Sound levels

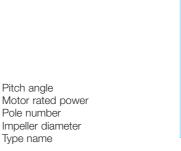
The sound power values over the frequency and as summation of sound levels for various angles of incidence are stated above the characteristic curves on the product pages.

Installation

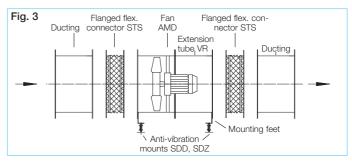
- Horizontal and vertical positioning, depending on the installation location.
- The use of vibration dampers (accessory) is recommended in order to prevent the transfer of vibrations.

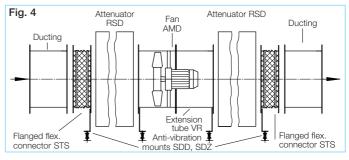
Duct installation (tilting)

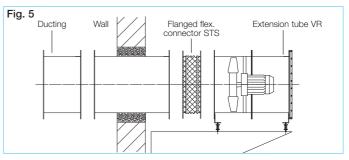
An extension tube (type VR, accessory) (Figure 2) may need to be fitted in order to prevent overturning when fitting the medium-pressure axial fan with canvas connecting pieces on the intake side and exhaust side (type STS, accessory).


Duct installation

Arrangement of the mounting brackets (type MK) for horizontal mounting or a mounting ring (type MRV) for vertical mounting with vibration dampers on the fan. Use of vibration dampers for pressure load (Type SDD, accessory) or tensile load (Type SDZ, accessory, when hanging from the ceiling). In order to prevent the noise and


the transfer of vibrations, canvas connecting pieces (Type STS, accessories) are to be provided on suction and pressure side (Figure 3).


Duct installation with attenuators on intake and exhaust sides


According to the local circumstances, on-site brackets are necessary to attach the attenuator and to retain the weight. The attenuator on the intake side placed at the inlet, with the attenuator on the pressure side placed at the outlet must both

be equipped with canvas connecting pieces (Type STS, accessory, figure 4).

□ Wall mounting (horizontal)

On the on-site brackets. Wall entrance with pipe or duct, immurement with mineral wool. Canvas connecting pieces (Type STS, accessory) on the suction and pressure side with extension duct (Type VR, accessory) and protective grille (Type SG, accessory, figure 5).

Information	Page
Information for planning	10 on
Installation accessories	230 on
Attenuators	436
Speed controller,	
pole switch	525 on

Fig. incl. mounting feet (MK, accessories)

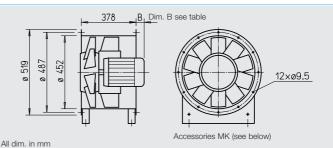
Specification Casing

Cylindrical duct with welded motor supporting plate and guide vane made of sheet steel. With flanges on both ends (except AVD DK) steel to DIN 24155 PT3. For direct in-line installation in ducting. Surface protection by powder coating RAL 7015 (grey).

Impeller

Hub and blades in corrosion resistant aluminium alloy. Dynamically balanced to DIN ISO 1940-1, class 6.3 for low vibration operation. Ten aerodynamically profiled blades achieve highest efficiency and pressure rates in cooperation with the guide vane. The pitch angle of the blades is adjustable at standstill and factory set.

Motor


Direct through efficient IE 2 or IE 3 standard three phase motor. Pole-switchable fans with IEC standard motor. Protection to IP 55, insulation class F.

Speed control

Stepless (0-100 %) by use of frequency inverters. The planned use of a frequency inverter without sine filter must be stated when ordering. This causes a change of the fan execution and if necessary additional costs.

Electrical connection

Standard terminal box (protection to IP 55) from polymer, mounted on the outside of the casing.

Motor protection

All AMD types are equipped with PTC thermistors as motor protection as standard. Effective motor protection is possible by means of full motor protection device (Type MSA, Ref. no. 1289, accessories) or FU (accessories).

Dimensions

For some types, the motor protrudes out of the casing. Overhang dim. B in mm can be seen in the table below.

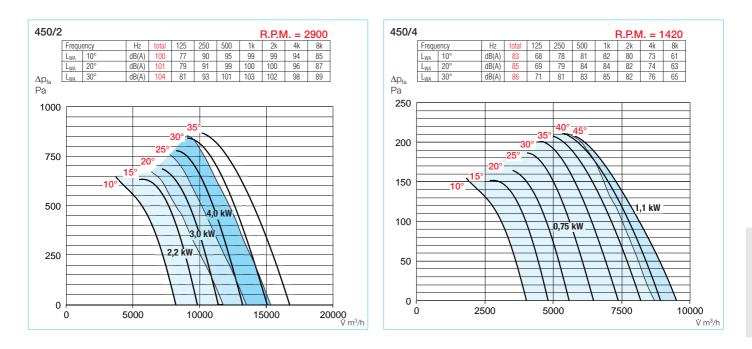
Sound levels

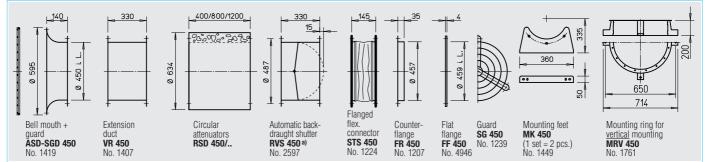
The sound power values concernig the frequency and as sum levels for different pitch angles are indicated on the product pages above the characteristic curves.

Information Page Information for planning 10 on

Made to order designs

Special design with inspection opening (add. price) on request.


Other accessories	Page
Installation accessories	230 on
Attenuators	436 on
Switch and	
control technology	525 on


Туре	Ref. no.	R.P.M.	Air flow volume (FID)	Motor power (output)	Voltage	Current	Dim. B motor overhang	Wiring diagram	Max. air flow temp.	Weight net approx.	Frequency inverter with integrated sine filter		Full motor protec- tion or pole switch		
		min ⁻¹	₿ m³/h	kW	V	А	mm	No.	+°C	kg	Туре	Ref. no.	Туре	Ref. no.	
3 phase motor, 400 V, 50 Hz, protection to IP 55															
AMD 450/4 0,75 kW	3109	1420	8930	0.75	400	1.8	15	796	60	40	FU-BS 2,5	5459	MSA	1289	
AMD 450/4 1,1 kW	3110	1390	10120	1.1	400	2.6	40	796	60	44	FU-BS 5,0	5460	MSA	1289	
AMD 450/2 2,2 kW	3106	2880	10850	2.2	400	4.5	65	796	60	47	FU-BS 5,0	5460	MSA	1289	
AMD 450/2 3 kW	3107	2880	12380	3	400	5.9	105	796	60	54	FU-BS 8,0	5461	MSA	1289	
AMD 450/2 4 kW	3108	2900	14970	4	400*	7.6	155	776	60	57	FU-BS 8,0	5461	MSA	1289	
Pole-switchable, 2-speed, 3 phase motor, Dahlander winding Y/YY, 400 V, 50 Hz, protection to IP 55 Pole switch surface															
AMD 450/4/2 0,65/2,5 kW	3121	1380/2855	5660/11660	0.65/2.5	400	1.9/5.0	40	777	60	61	—	—	PDA 12 ¹⁾	5081	
AMD 450/4/2 0,8/3,1 kW	3111	1380/2860	6200/12380	0.8/3.1	400	2.1/6.1	65	777	60	61	—	—	PDA 12 ¹⁾	5081	
AMD 450/4/2 1,1/4,4 kW	3113	1390/2860	7630/15780	1.1/4.4	400	3.0/8.7	155	777	60	67	—	—	PDA 12 ¹⁾	5081	

The pitch angle should be stated when ordering.

1) Flush mounted version see switch product page.

* Y/A start-up

a) For motorised shutters see accessory pages

	Vibration	dampers	
Compr	ession	Suspe	nsion
Туре	Ref. no.	Туре	Ref. no.
SDD 1	1452	SDZ 1	1454
SDD 1	1452	SDZ 1	1454
SDD 1	1452	SDZ 1	1454
SDD 1	1452	SDZ 1	1454
SDD 1	1452	SDZ 1	1454
SDD 1	1452	SDZ 2	1455
SDD 1	1452	SDZ 2	1455
SDD 1	1452	SDZ 2	1455

Fig. incl. mounting feet (MK, accessories)

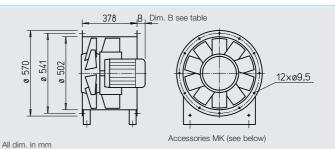
Specification Casing

Cylindrical duct with welded motor supporting plate and guide vane made of sheet steel. With flanges on both ends (except AVD DK) steel to DIN 24155 PT3. For direct in-line installation in ducting. Surface protection by powder coating RAL 7015 (grey).

Impeller

Hub and blades in corrosion resistant aluminium alloy. Dynamically balanced to DIN ISO 1940-1, class 6.3 for low vibration operation. Ten aerodynamically profiled blades achieve highest efficiency and pressure rates in cooperation with the guide vane. The pitch angle of the blades is adjustable at standstill and factory set.

□ Motor


Direct through efficient IE 2 or IE 3 standard three phase motor. Pole-switchable fans with IEC standard motor. Protection to IP 55, insulation class F.

Speed control

Stepless (0-100 %) by use of frequency inverters. The planned use of a frequency inverter without sine filter must be stated when ordering. This causes a change of the fan execution and if necessary additional costs.

Electrical connection

Standard terminal box (protection to IP 55) from polymer, mounted on the outside of the casing.

Motor protection

All AMD types are equipped with PTC thermistors as motor protection as standard. Effective motor protection is possible by means of full motor protection device (Type MSA, Ref. no. 1289, accessories) or FU (accessories).

Dimensions

For some types, the motor protrudes out of the casing. Overhang dim. B in mm can be seen in the table below.

Sound levels

The sound power values concernig the frequency and as sum levels for different pitch angles are indicated on the product pages above the characteristic curves.

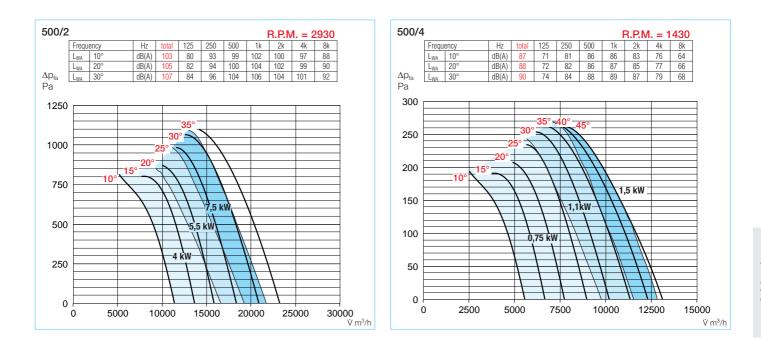
issories MK (see below)

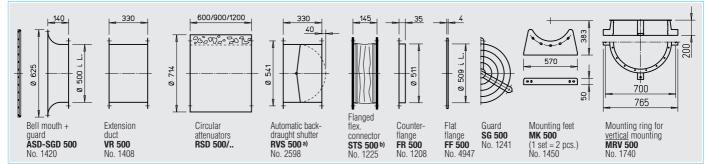
Information Page 10 on

Made to order designs

Special design with inspection opening (add. price) on request.

Other accessories	Page
Installation accessories	230 on
Attenuators	436 on
Switch and	
control technology	525 on


Туре	Ref. no.	R.P.M.	Air flow volume (FID)	Motor power (output)	Voltage	Current	Dim. B motor overhang	Wiring diagram	Max. air flow temp.	Weight net approx.	Frequency with inte sine fi	grated	Full motor tion of pole sw	br	
		min ⁻¹	V m³∕h	kW	V	А	mm	No.	+°C	kg	Туре	Ref. no.	Туре	Ref. no.	
3 phase motor, 400 V, 50 Hz, pro	tectior	n to IP 55													
AMD 500/4 0,75 kW	3118	1420	9420	0.75	400	1.8	35	796	60	46	FU-BS 2,5	5459	MSA	1289	
AMD 500/4 1,1 kW	3119	1390	11600	1.1	400	2.6	60	796	60	50	FU-BS 5,0	5460	MSA	1289	
AMD 500/4 1,5 kW	3122	1420	13250	1.5	400	3.5	85	796	60	53	FU-BS 5,0	5460	MSA	1289	
AMD 500/2 4 kW	3115	2900	15620	4	400*	7.6	175	776	60	83	FU-BS 8,0	5461	MSA	1289	
AMD 500/2 5,5 kW	3116	2910	17600	5.5	400*	10.4	180	776	60	97	FU-BS 14	5463	MSA	1289	
AMD 500/2 7,5 kW	3117	2940	21570	7.5	400*	13.7	220	776	60	102	FU-BS 14	5463	MSA	1289	
Pole-switchable, 2-speed, 3 pha	ise mo	tor, Dahlan	der winding \	(/YY, 400 V,	50 Hz, pro	tection to	IP 55						Pole switch	n surface	
AMD 500/8/4 0,22/1,0 kW	3275	645/1390	5660/11400	0.22/1.0	400	0.9/2.4	60	777	60	55			PDA 12 ¹⁾	5081	
AMD 500/8/4 0,3/1,3 kW	3276	645/1390	6250/12630	0.3/1.3	400	1.6/3.3	85	777	60	58	—	—	PDA 12 ¹⁾	5081	
AMD 500/4/2 1,4/5,9 kW	3273	1400/2900	9030/18600	1.4/5.9	400	3.6/11.4	180	777	60	118	—	—	PDA 12 ¹⁾	5081	
AMD 500/4/2 2,0/8,0 kW	3274	1410/2900	10900/22600	2.0/8.0	400	4.7/14.9	220	777	60	129	—	—	PDA 25	5060	


The pitch angle should be stated when ordering.

1) Flush mounted version see switch product page.

2) Extension duct VR.. required over the motor overhang.

* Y/ Δ start-up

a) For motorised shutters see accessory pages

	Vibration	dampers	
Compre	ssion	Suspen	sion
Туре	Ref. no.	Туре	Ref. no.
SDD 1	1452	SDZ 1	1454
SDD 1	1452	SDZ 1	1454
SDD 1	1452	SDZ 1	1454
SDD 2	1453	SDZ 2	1455
SDD 2 ²⁾	1453	SDZ 2 ²⁾	1455
SDD 2 ²⁾	1453	SDZ 2 ²⁾	1455
SDD 1	1452	SDZ 1	1454
SDD 1	1452	SDZ 2	1455
SDD 2 ²⁾	1453	SDZ 2 ²⁾	1455
SDD 2 ²⁾	1453	SDZ 2 ²⁾	1455

Fig. incl. mounting feet (MK, accessories)

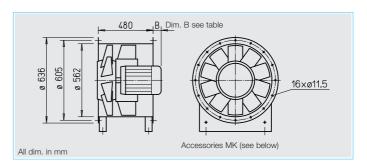
Specification Casing

Cylindrical duct with welded motor supporting plate and guide vane made of sheet steel. With flanges on both ends (except AVD DK) steel to DIN 24155 PT3. For direct in-line installation in ducting. Surface protection by powder coating RAL 7015 (grey).

Impeller

Hub and blades in corrosion resistant aluminium alloy. Dynamically balanced to DIN ISO 1940-1, class 6.3 for low vibration operation. Ten aerodynamically profiled blades achieve highest efficiency and pressure rates in cooperation with the guide vane. The pitch angle of the blades is adjustable at standstill and factory set.

□ Motor


Direct through efficient IE 2 or IE 3 standard three phase motor. Pole-switchable fans with IEC standard motor. Protection to IP 55, insulation class F.

Speed control

Stepless (0-100 %) by use of frequency inverters. The planned use of a frequency inverter without sine filter must be stated when ordering. This causes a change of the fan execution and if necessary additional costs.

Electrical connection

Standard terminal box (protection to IP 55) from polymer, mounted on the outside of the casing.

Motor protection

All AMD types are equipped with PTC thermistors as motor protection as standard. Effective motor protection is possible by means of full motor protection device (Type MSA, Ref. no. 1289, accessories) or FU (accessories).

Dimensions

For some types, the motor protrudes out of the casing. Overhang dim. B in mm can be seen in the table below.

Sound levels

The sound power values concernig the frequency and as sum levels for different pitch angles are indicated on the product pages above the characteristic curves.

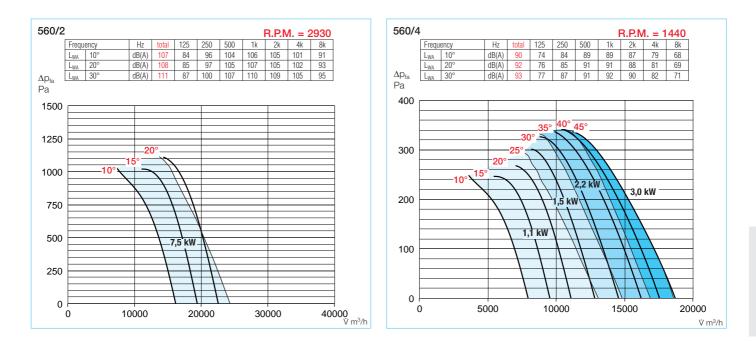
Information

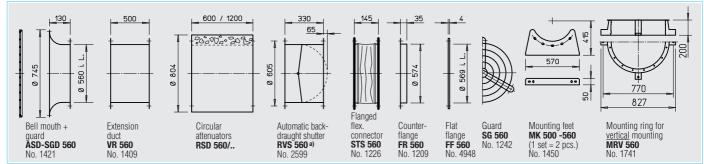
Information for planning 10 on

Page

Made to order designs

Special design with inspection opening (add. price) on request.


Other accessories	Page
Installation accessories	230 on
Attenuators	436 on
Switch and	
control technology	525 on


Туре	Ref. no.	R.P.M.	Air flow volume (FID)	Motor power (output)	Voltage	Current	Dim. B motor overhang	Wiring diagram	Max. air flow temp.	Weight net approx.	Frequency with inte sine fi	grated	Full motor tion o pole sw	or	
		min ⁻¹	₿ m³/h	kW	٧	А	mm	No.	+°C	kg	Туре	Ref. no.	Туре	Ref. no.	
3 phase motor, 400 V, 50 Hz, protec	tion	to IP 55													
AMD 560/4 1,1 kW	3281	1390	11870	1.1	400	2.6	0	796	60	61	FU-BS 5,0	5460	MSA	1289	
AMD 560/4 1,5 kW	3282	1420	14750	1.5	400	3.5	0	796	60	64	FU-BS 5,0	5460	MSA	1289	
AMD 560/4 2,2 kW	3285	1440	17600	2.2	400	4.7	40	796	60	74	FU-BS 5,0	5460	MSA	1289	
AMD 560/4 3 kW	3286	1440	19520	3	400	6,2	40	796	60	80	FU-BS 8,0	5461	MSA	1289	
AMD 560/2 7,5 kW	3279	2940	22000	7.5	400*	13.7	100	776	60	123	FU-BS 14	5463	MSA	1289	
Pole-switchable, 2-speed, 3 phase	moto	r, Dahland	er winding Y	/YY, 400 V,	50 Hz, pro	tection to	IP 55						Pole switch	n surface	
AMD 560/8/4 0,55/2,0 kW	3272	680/1410	8150/16500	0.55/2.0	400	2.0/4.5	0	777	60	79	_	—	PDA 12 ¹⁾	5081	
AMD 560/8/4 0,65/2,4 kW	3290	680/1410	8740/18160	0.65/2.4	400	2.5/5.5	40	777	60	79	—	_	PDA 12 ¹⁾	5081	
AMD 560/4/2 2,0/8,0 kW	3287	1410/2900	11280/23150	2.0/8.0	400	4.7/14.9	100	777	60	149	_	—	PDA 25	5060	

The pitch angle should be stated when ordering.

1) Flush mounted version see switch product page.

* Y/∆ start-up

a) For motorised shutters see accessory pages

	Vibration	dampers	
Compr	ession	Suspe	nsion
Туре	Ref. no.	Туре	Ref. no.
SDD 1	1452	SDZ 2	1455
SDD 1	1452	SDZ 2	1455
SDD 1	1452	SDZ 2	1455
SDD 2	1453	SDZ 2	1455
SDD 2	1453	SDZ 2	1455
SDD 2	1453	SDZ 2	1455
SDD 2	1453	SDZ 2	1455
SDD 2	1453	SDZ 2	1455

Fig. incl. mounting feet (MK, accessories)

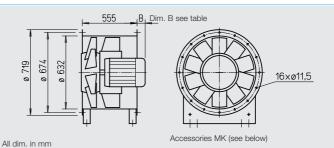
Specification Casing

Cylindrical duct with welded motor supporting plate and guide vane made of sheet steel. With flanges on both ends (except AVD DK) steel to DIN 24155 PT3. For direct in-line installation in ducting. Surface protection by powder coating RAL 7015 (grey).

Impeller

Hub and blades in corrosion resistant aluminium alloy. Dynamically balanced to DIN ISO 1940-1, class 6.3 for low vibration operation. Ten aerodynamically profiled blades achieve highest efficiency and pressure rates in cooperation with the guide vane. The pitch angle of the blades is adjustable at standstill and factory set.

Motor


Direct through efficient IE 2 or IE 3 standard three phase motor. Pole-switchable fans with IEC standard motor. Protection to IP 55, insulation class F.

Speed control

Stepless (0-100 %) by use of frequency inverters. The planned use of a frequency inverter without sine filter must be stated when ordering. This causes a change of the fan execution and if necessary additional costs.

Electrical connection

Standard terminal box (protection to IP 55) from polymer, mounted on the outside of the casing.

Motor protection

All AMD types are equipped with PTC thermistors as motor protection as standard. Effective motor protection is possible by means of full motor protection device (Type MSA, Ref. no. 1289, accessories) or FU (accessories).

Dimensions

For some types, the motor protrudes out of the casing. Overhang dim. B in mm can be seen in the table below.

Sound levels

The sound power values concernig the frequency and as sum levels for different pitch angles are indicated on the product pages above the characteristic curves.

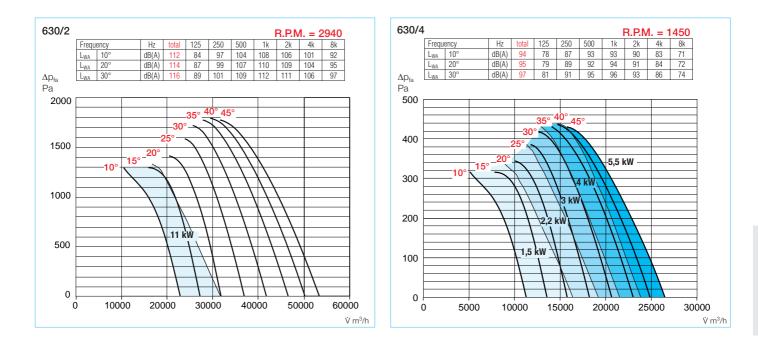
Information

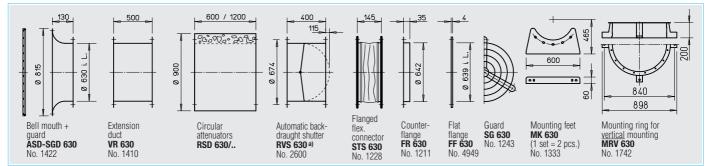
Information for planning 10 on

Page

Made to order designs

Special design with inspection opening (add. price) on request.


Other accessories	Page
Installation accessories	230 on
Attenuators	436 on
Switch and	
control technology	525 on


Туре	Ref. no.	R.P.M.	Air flow volume (FID)	Motor power (output)	Voltage	Current	Dim. B motor overhang	Wiring diagram	Max. air flow temp.	Weight net approx.	Frequency with inte sine f	grated	Full motor tion pole sv	or	
		min ⁻¹	₿ m³/h	kW	V	А	mm	No.	+°C	kg	Туре	Ref. no.	Туре	Ref. no.	
3 phase motor, 400 V, 50 Hz, prot	ection	to IP 55													
AMD 630/4 1,5 kW	3291	1420	14390	1.5	400	3.5	0	796	60	84	FU-BS 5,0	5460	MSA	1289	
AMD 630/4 2,2 kW	3292	1440	18500	2.2	400	4.7	0	796	60	84	FU-BS 5,0	5460	MSA	1289	
AMD 630/4 3 kW	3293	1440	21400	3.0	400	6.2	0	796	60	99	FU-BS 8,0	5461	MSA	1289	
AMD 630/4 4 kW	3294	1445	25130	4.0	400*	8.1	30	776	60	94	FU-BS 10	5462	MSA	1289	
AMD 630/4 5,5 kW	3295	1450	27700	5.5	400*	11.1	40	776	60	115	FU-BS 14	5463	MSA	1289	
AMD 630/2 11 kW	3376	2940	32000	11.0	400*	20.0	145	776	60	210	_		MSA	1289	
Pole-switchable, 2-speed, 3 phase	se moto	or, Dahland	er winding Y	/YY, 400 V,	50 Hz, pro	tection to	IP 55						Pole switcl	h surface	
AMD 630/8/4 0,55/2,0 kW	3297	680/1410	8030/16660	0.55/2.0	400	2.00/4.5	0	777	60	98	—		PDA 12 ¹⁾	5081	
AMD 630/8/4 0,9/3,2 kW	3298	680/1420	11000/21750	0.9/3.2	400	3.2/7.1	30	777	60	104	—		PDA 12 ¹⁾	5081	
AMD 630/8/4 1,1/4,5 kW	3299	680/1435	13260/26450	1.1/4.5	400	3.6/9.3	40	777	60	130	—	—	PDA 12 ¹⁾	5081	

The pitch angle should be stated when ordering.

1) Flush mounted version see switch product page.

* Y/A start-up

a) For motorised shutters see accessory pages

	Vibration	dampers	
Compr	ession	Suspe	nsion
Туре	Ref. no.	Туре	Ref. no
SDD 2	1453	SDZ 2	1455
SDD 2	1453	SDZ 2	1455
SDD 2	1453	SDZ 2	1455
SDD 2	1453	SDZ 2	1455
SDD 2	1453	SDZ 2	1455
	_	—	—
SDD 2	1453	SDZ 2	1455
SDD 2	1453	SDZ 2	1455
SDD 2	1453	SDZ 2	1455

Centrifugal performance characteristics with axial flow pattern: RADAX[®] VAR

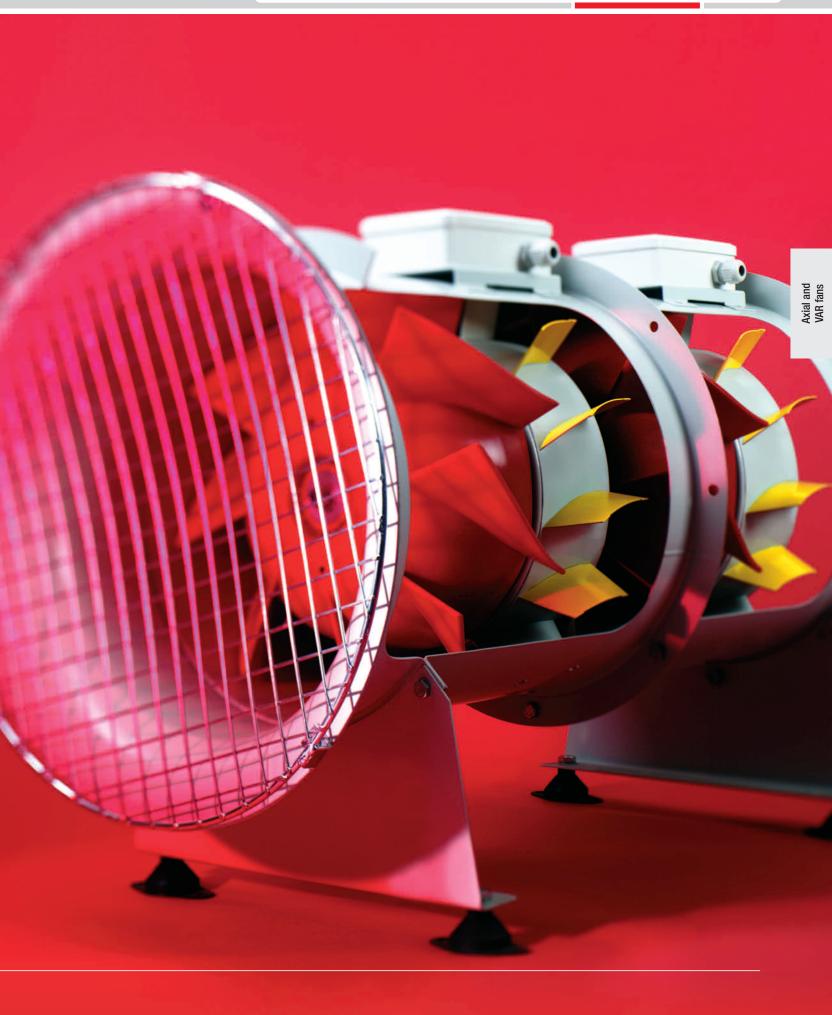
COMPACT

PRESSURE-RESISTANT

In their compact casing, the RADAX® VAR impellers ensure high pressure and a large volume conveyed. The VAR's recipe for success lies in the combination of the performance characteristics of centrifugal fans with an axial flow pattern. Guiding the air in a straight line improves the efficiency and allows a significant reduction of the space required, as well as savings in terms of the ducting system.

This synergy has enormous benefits:

- Maximum performance with low energy costs.
- Low sound levels.
- High-pressures and volumes with the smallest of dimensions.
- Can be used universally.
- Freedom of planning.
- No need for deflections and shaped pieces on-site with the related resistances.
- Low installation costs.


UNIVERSAL

In addition to single phase types, the RADAX[®] VAR range offers the following:

- More Ø up to 1000 mm
- B VAR types for the smoke extraction insert pursuant to DIN 12101-3 F300 (60 min.) or F400, F600 (120 min.).
- Parallel units with large volumes and high pressures for garage ventilation (VDI 2053).
- Two-stage TwinVent[®] with maximum pressure values.

This information completes the "General Technical Information" section.

Features

RADAX[®] VAR is a range of high pressure in-line fans, combining the advantages of axial and centrifugal fans.

The mixed flow impeller combined with the fixed guide vanes are designed to provide high air flows and pressures very efficiently.

Air flow

The axial air flow pattern allows operation without loss, guide vanes improve and straighten the air and increase the efficiency of the fan. The VAR in-line installation eliminates the need for bulky bends, transformation pieces etc. including their resistances. This saves installation and energy costs.

Casing

Casing flanges on both sides to DIN 24155, Pt.3 with guide vanes and motor support made from galvanised steel. Models with R.P.M. = 2800 of size 400, 450, 500 as well as all models of size 630 welded casing, hotdip galvanised. Terminal box to IP 55 fixed to the outer casing.

Impeller

Mixed flow impeller with 8 spacious curved blades. Up to size 355 made from polymer. Models with R.P.M. = 2800 of size 355 as well as all models of size 400 to 630 made from hot-dip galvanised steel. Aluminium is available (additional charge) on demand.

VAR fans offer high efficiency, low operation noise, high corrosion resistance and low vibration operation through dynamic balance to DIN ISO 1940 Pt.1 – quality grade 6.3.

Air flow temperature

The standard models are suitable in the range from -30 °C to at least +40 °C. See also information on product pages. Higher temperature models are available on request.

Information

Information for planning, Acoustics, explosion prot. 10 on General technical information, speed control 15 on

Page

Explosion protection

The ex-proof models conform to cluster II, category 2G for operation in zone 1 or 2. According to Directive 2014/34/EU (ATEX), larger air gaps are specified which lead to a power reduction of up to 10%.

Air flow direction

The air flow of the fan cannot be reversed, however the fan is suitable for installation in any position. The correct direction of rotation and air flow are marked on the fan.

Installation position, mounting, condensation openings To achieve the performance figures shown, a straight duct of 2 times the diameter in length downstream of the fan is required (and installed in ducting ideally the same upstream) (Figure 1).

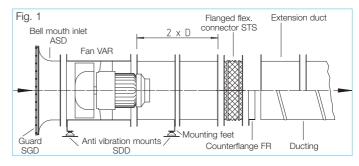
- RADAX[®] VAR can be installed in any position. Where motor condensate drainage is used, ensure the drain holes face downwards.
- When installing the fan for vertical airflow as well as in an outside position or in a permanently humid or wet atmosphere, this must be specified at time of ordering.

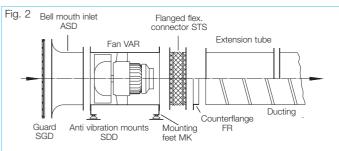
On site assembly and mounting must to be carried in such a way that the vertically fitted fan is distortion-free and safe.

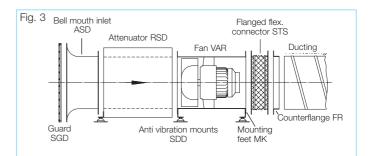
Positioning

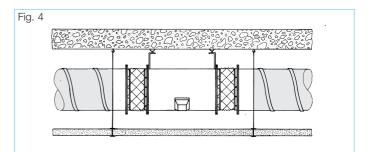
To avoid transmission of vibration between fan and building the use of anti vibration mounts is recommended (accessory SDD, SDZ). Larger motors may protrude to the rear and cause uneven distribution due to their high weight. An extension duct VR (accessories) is provided to determine the centre of gravity!

Installation examples

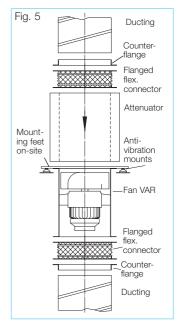

Horizontal


Figure 2 Free intake, ducted on exhaust.


- Figure 3


Free intake with attenuator, ducted on exhaust. To reduce inlet and exhaust noise levels, attenuators can be fitted to both ends of the fan.

Mounted on ceiling, wall or floor.


- Figure 4

Ceiling suspension

Figure 4 shows the typical installation for ventilation. The installation of VAR systems is possible without any additional expenses through direct suspension on ceilings or walls. The casing is designed for straight in-line installation using the flanged ends (to DIN 24155 Pt. 3).

Vertical Figure 5

In-line wall mounted installation with attenuator on intake. The accessories should be fixed separately to ensure that the fan may be easily removed for maintenance.

The following table facilitates the selection of RADAX[®] VAR high pressure fans by combining the parameters of static pressure Δp_{fa} , air flow volume V, speed min⁻¹, sound pressure level dB(A) and impeller diameter DN mm.

Sizes from Ø 710 mm as well as twin and parallel VAR units are shown in a separate catalogue.

Diameter	R.P.M.	Sound pressure level - intake	Air flow vo	lume V m³/h	against stat	ic pressure =	N / $m^2 = free$	e available pi	ressure						
mm	min ⁻¹	L _{PA} dB(A)	(Δp_{fa}) in P	a											
		at 4 m	0	50	100	150	200	300	400	500	600	700	800	900	1000
225	2800	61	1770	1700	1600	1510	1400								
225	1450	46	900	730											
250	2800	64	2540	2450	2350	2250	2150	1910							
250	1450	49	1250	1050											
280	2800	68	3320	3220	3110	3010	2900	2670	2360						
280	1450	52	1630	1400	1000										
315	2800	71	4670	4550	4430	4310	4200	3930	3650	3280					
315	1450	56	2510	2300	2060	1730									
355	2800	75	7220	7080	6980	6850	6700	6450	6150	5850	5500	5050			
355	1450	60	3540	3300	3050	2750	2200								
400	2800	78	10150	10000	9850	9700	9600	9300	9000	8700	8350	7950	7500	7100	6400
400	1450	63	5260	4950	4650	4310	3930								
400	930	52	3500	3060	2290										
450	2800	83	14200	14100	13900	13750	13600	13300	12900	12500	12200	11800	11400	10800	10350
450	1450	67	7280	6950	6650	6300	5900	4800							
450	930	56	4990	4520	3870										

Diameter	R.P.M.	Sound pressure level - intake	Air flow vo	olume V m³/ł	n against stat	ic pressure =	$N / m^2 = fre$	e available p	ressure					
mm	min ⁻¹	L _{PA} dB(A)	(Δp_{fa}) in F	°a										
		at 4 m	0	150	300	450	600	750	900	1050	1200	1550	1800	
500	2800	86	22310	21800	21400	20800	20300	19750	19200	18600	17900	16000	13500	
500	1450	70	9700	8640	7300									
500	930	59	6860	5150										
560	1450	73	13550	12500	11300	9850								
560	930	63	9850	8110										
560	725	56	7510											
630	1450	77	21460	20410	19110	17610	15760							
630	930	67	14040	12190	8740									
630	725	60	10690	7810										
	The foll	lowing sizes are s	shown in a	separate ca	atalogue.									
710	1480	81	31350	30210	28920	27370	25680	23710	20790					
710	950	70	20110	18120	15390									
710	725	64	15330	12380										
800	1480	85	44870	43580	42210	40610	38810	36910	34780	32130	26670			
800	950	74	28770	26640	23850	19970								
800	725	67	21940	18810										
900	1480	88	63890	62450	60940	59300	57440	55410	53310	50990	48420	39610		
900	950	78	40990	38650	35710	32250	26830							
900	725	71	31260	27910	23160									
4000	1400	00	07040	00050	04440	00500	00770	70050	70.400	74440	74.050	00000	57450	
1000	1480	92	87640	86050	84410	82590	80770	78650	76400	74110	71650	66090	57450	
1000	950	81	56220	53690	50670	47080	42960	36050						
1000	725	74	42880	39330	34590	25090								

Specification Casing

Manufactured in galvanised sheet steel with flanges on both sides to DIN 24155. Pt. 3. with fixed guide vanes and motor support.

Impeller

Optimised for high pressure and performance. Specially developed mixed-flow

curved impeller manufactured from impact resistant polymers.

Motor

Direct driven, maintenance free flange motor, totally enclosed with an aluminium casing and cooling fins, protected to IP 54. Sealed for life ball bearings with tropicalized protection of windings and radio suppression. Optional drainage holes made to order (please state installation position).

Speed control

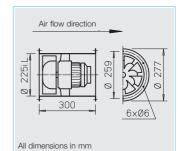
For all speed controllable models the current is given in the "speed controlled" column of the table below which must be used when selecting a controller (see controller column). The air flow volumes can be seen from the characteristic curves. If the fan is to be controlled by a frequency inverter without a sine filter, this must be stated when ordering. This requires a change of fan design and potential additional costs. Explosion proof fans are not controllable.

Electrical connection

Terminal box fitted externally on the casing as standard (IP 55).

Installation

Installation in any position. Ensure that motor drainage holes (where used) face downwards.


Motor protection

All models (3~ except ex proof) have thermal contacts as standard which must be connected to a full motor protection unit (see table below). With the 1 ph. ex-proof models thermal contacts are wired in series with the winding which automatically resets after cooling.

Models without thermal contacts must be protected by a conventional circuit breaker.

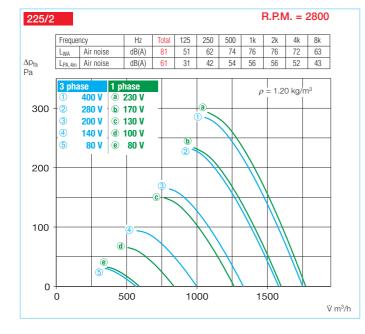
Sound levels

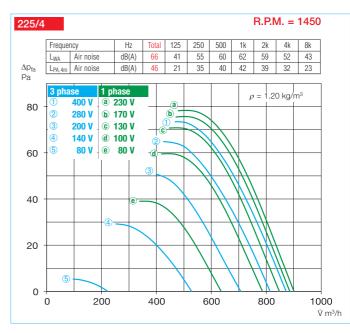
Data shown within the performance curves refer to sound power levels. For determination of the lower sound pressure levels refer to diagram on "Technical information" page. Sound immission and acoustic information on page 10 on.

Information

Technical description	208
Selection chart	209
Design of systems	10 on
	Selection chart

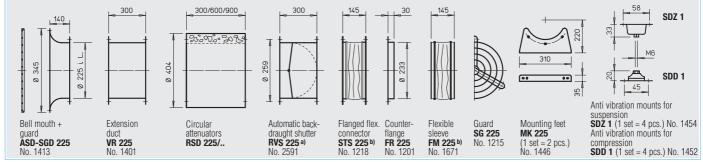
Page


Made to order designs


Alternative voltages, frequencies, protection classes, acid protection, high temperatures etc. are available on request.

For safety and correct use note the technical information on page 15 on.

Туре	Ref. no.	R.P.M.	Air flow volume (FID)	Motor power*	Voltage	standard	rent* speed controlled	Wiring diagram	Maximum a standard supply	ir flow temp. speed controlled	Nominal weight (net)	5 step transformer controller Pole switch		Full motor protection starter using the motor thermal contacts		Anti vit mou comp	
		min ⁻¹	V m³∕h	kW	V	А	А	No.	+°C	+°C	kg	Туре	Ref. no.	Туре	Ref. no.	Туре	Туре
1 Phase motor,	1 Phase motor, 1 ph. / 50 Hz, protection to IP 54																
VARW 225/4	6660	1450	900	0.10	230	0.50	0.55	966	60	40	10.5	MWS 1,5 ¹⁾	1947	MW	1579	SDD 1	SDZ 1
VARW 225/2	6661	2770	1778	0.35	230	1.90	2.50	966	60	40	10.5	MWS 3 ¹⁾	1948	MW	1579	SDD 1	SDZ 1
3 Phase motor, 50 Hz, protection to IP 54																	
VARD 225/4	6662	1420	880	0.10	400Y	0.20	0.20	469	60	40	10.5	RDS 1 ^{1) 4)}	1314	MD	5849	SDD 1	SDZ 1
VARD 225/2	6663	2720	1750	0.28	400Y	0.60	0.60	469	60	40	10.5	RDS 1 ^{1) 4)}	1314	MD	5849	SDD 1	SDZ 1
Pole-switching,	2 speed	l motor (Da	hlander wir	ndings Y/YY), 3 ph./	50 Hz, pro	tection to l	IP 54				Pole switch					
VARD 225/4/2	6771	1460/2800	880/1800	0.06/0.30	400	0.22/0.57	—	472	60	—	10.5	PDA 12 ³⁾	5081	M 3 ²⁾	1293	SDD 1	SDZ 1
Explosion proof	, E Ex de	e II B, 1 ph.	/ 50 Hz, ten	nperature c	lass T1-T3	, protectio	on to IP 55										
VARW 225/4 Ex	6733	1400	950	0.06	230	0.70	—	757	40	—	12.0	not perm	itted	—	—	SDD 1	SDZ 1
VARW 225/2 Ex	6734	2650	1780	0.18	230	1.23	—	757	40	—	12.5	not perm	itted	—	_	SDD 1	SDZ 1
Explosion proof	, E Exe I	l, 3 ph. / 50	Hz, temper	ature class	T1-T3, pr	otected to	IP 54										
VARD 225/4 Ex	6664	1400	940	0.12	400	0.41	—	470	40	_	12.5	not perm	itted	not pe	rmitted	SDD 1	SDZ 1
VARD 225/2 Ex	6665	2850	1930	0.25	400	0.72	—	470	40	—	12.5	not perm	itted	not pe	rmitted	SDD 1	SDZ 1
* Ex models: For n	ominal va	alue of motor	see informat	tion on page	16 ¹⁾ ir	ncludes full	motor prote	ction unit	2) includ	les operation	and spee	d switch	3) Se	e product pa	ge for flush n	nounted ve	rsion


* Ex models: For nominal value of motor see information on page 16 1) includes full motor protection unit 4) Frequency inverter with integrated Sine filter, Type FU-BS 2,5, No. 5459, see product page FU.

Other accessorie	s Page								
^{b)} Accessories for ex-proof fans									
Flanged flexible cor Type STS 225 Ex Re Flexible sleeve Type FM 225 Ex Re	ef. no. 2500								
Attenuators	421 on								
Shutters and grilles Speed controllers	487 on								
and switches	525 on								

Accessories Specification see page 231 on

a) For motorised shutters see accessory pages

^{b)} Types for explosion proof fans see above

211

Specification Casing

Manufactured in galvanised sheet steel with flanges on both sides to DIN 24155. Pt. 3. with fixed guide vanes and motor support.

Impeller

Optimised for high pressure and performance.

Specially developed mixed-flow curved impeller manufactured from impact resistant polymers.

Motor

Direct driven, maintenance free flange motor, totally enclosed with an aluminium casing and cooling fins, protected to IP 54. Sealed for life ball bearings with tropicalized protection of windings and radio suppression. Optional drainage holes made to order (please state installation position).

Speed control

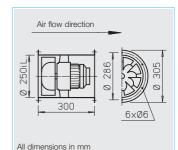
For all speed controllable models the current is given in the "speed controlled" column of the table below which must be used when selecting a controller (see controller column). The air flow volumes can be seen from the characteristic curves. If the fan is to be controlled by a frequency inverter without a sine filter, this must be stated when ordering. This requires a change of fan design and potential additional costs. Explosion proof fans are not controllable.

Electrical connection

Terminal box fitted externally on the casing as standard (IP 55).

Installation

Installation in any position. Ensure that motor drainage holes (where used) face downwards.


Motor protection

All models (3~ except ex proof) have thermal contacts as standard which must be connected to a full motor protection unit (see table below). With the 1 ph. ex-proof models thermal contacts are wired in series with the winding which automatically resets after cooling.

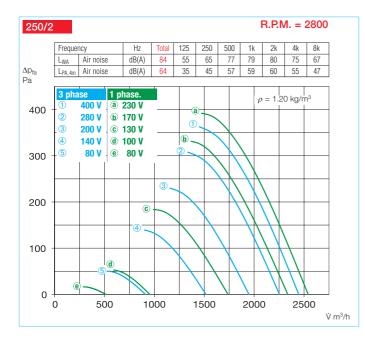
Models without thermal contacts must be protected by a conventional circuit breaker.

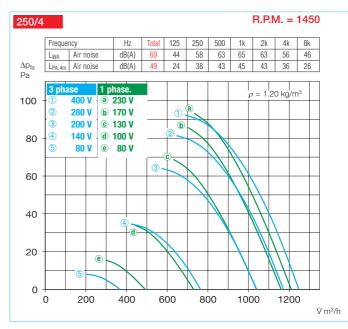
Sound levels

Data shown within the performance curves refer to sound power levels. For determination of the lower sound pressure levels refer to diagram on "Technical information" page. Sound immission and acoustic information on page 10 on.

Information Page Technical description 208 Selection chart 209 Design of systems 10 on

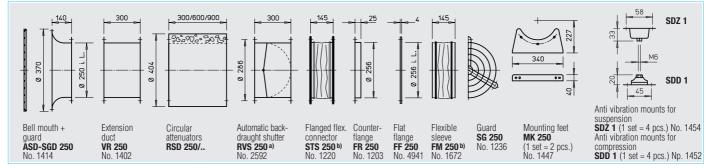
Made to order designs


Alternative voltages, frequencies, protection classes, acid protection, high temperatures etc. are available on request.


For safety and correct use note the technical information on page 15 on.

Туре	Ref. no.	R.P.M.	Air flow volume (FID)	Motor power*	Voltage	standard	ent* speed controlled	Wiring diagram	Maximum ai standard supply	ir flow temp. speed controlled	Weight net	5 step transformer controller Pole switch	Full motor protection starter using the motor thermal contacts		Anti vit mou comp	
		min ⁻¹	∀ m³/h	kW	V	А	А	No.	+°C	+°C	kg	Type Ref. no.	Type R	lef. no.	Туре	Туре
1 Phase motor, 1 ph. / 50 Hz, protection to IP 54																
VARW 250/4	6666	1420	1210	0.12	230	0.46	0.60	966	60	40	11.5	MWS 1,5¹⁾ 1947	MW	1579	SDD 1	SDZ 1
VARW 250/2	6667	2840	2540	0.55	230	2.60	3.90	966	60	40	13.0	MWS 5¹⁾ 1949	MW	1579	SDD 1	SDZ 1
3 Phase motor, 50 Hz, protection to IP 54																
VARD 250/4	6668	1410	1250	0.09	400	0.30	0.30	469	60	40	11.5	RDS 1 ^{1) 4)} 1314	MD	5849	SDD 1	SDZ 1
VARD 250/2	6669	2800	2450	0.47	400	1.10	1.10	469	60	40	11.5	RDS 2 ^{1) 4)} 1315	MD	5849	SDD 1	SDZ 1
Pole-switching,	2 speed	motor (Da	hlander wir	dings Y/YY	'), 3 ph. /	50 Hz, prot	tection to	IP 54				Pole switch				
VARD 250/4/2	6773	1425/2750	1200/2400	0.75/0.49	400	0.24/0.94		472	60	_	13.0	PDA 12³⁾ 5081	M 3 ²⁾	1293	SDD 1	SDZ 1
Explosion proof	i, E Ex de	II B, 1 ph.	/ 50 Hz, ten	nperature c	lass T1-T3	, protectio	on to IP 55									
VARW 250/4 Ex	6735	1400	1290	0.06	230	0.70		757	40	—	13.0	not permitted	—	—	SDD 1	SDZ 1
Explosion proof	i, E Exe II	l, 3 ph. / 50	Hz, temper	ature class	T1-T3, pr	otected to	IP 54									
VARD 250/4 Ex	6670	1400	1300	0.12	400	0.41		470	40	—	13.0	not permitted	not permit	ted	SDD 1	SDZ 1
VARD 250/2 Ex	6671	2825	2590	0.37	400	0.95		470	40	_	15.5	not permitted	not permit	ted	SDD 1	SDZ 1
* Ex models: For n	iominal va	lue of motor	see informat	tion on page	16 ¹⁾ ir	ncludes full	motor prote	ection unit	²⁾ incluc	les operation	and spee	ed switch ³⁾ se	e product page fo	or flush m	iounted ve	rsion

4) Frequency inverter with integrated Sine filter, Type FU-BS 2,5, No. 5459, see product page FU.



Other accessorie	es Page								
^{b)} Accessories for ex-proof fans									
Flanged flexible co Type STS 250 Ex R Flexible sleeve Type FM 250 Ex R	lef. no. 2501								
Attenuators Shutters	421 on								
and grilles Speed controllers	487 on								
and switches	525 on								

Accessories Specification see page 231 on

a) For motorised shutters see accessory pages

^{b)} Types for explosion proof fans see above

Specification Casing

Manufactured in galvanised sheet steel with flanges on both sides to DIN 24155. Pt. 3. with fixed guide vanes and motor support.

Impeller

Optimised for high pressure and performance.

Specially developed mixed-flow curved impeller manufactured from impact resistant polymers.

Motor

Direct driven, maintenance free flange motor, totally enclosed with an aluminium casing and cooling fins, protected to IP 54. Sealed for life ball bearings with tropicalized protection of windings and interference-free. Optional drainage holes made to order (please state installation position).

Speed control

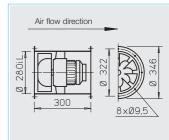
For all speed controllable models the current is given in the "speed controlled" column of the table below which must be used when selecting a controller (see controller column). The air flow volumes can be seen from the characteristic curves. If the fan is to be controlled by a frequency inverter without a sine filter, this must be stated when ordering. This requires a change of fan design and potential additional costs. Explosion proof fans are not controllable.

Electrical connection

Terminal box fitted externally on the casing as standard (IP 55).

Installation

Installation in any position. Ensure that motor drainage holes (where used) face downwards.


Motor protection

All models (3~ except ex proof) have thermal contacts as standard which must be connected to a full motor protection unit (see table below). With the 1 ph. ex-proof models thermal contacts are wired in series with the winding which automatically resets after cooling.

Models without thermal contacts must be protected by a conventional circuit breaker.

Sound levels

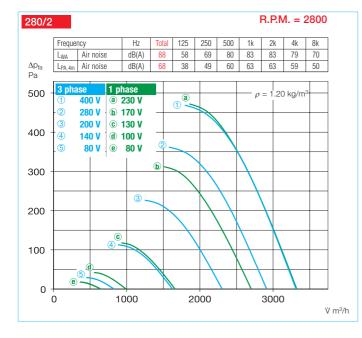
Data shown within the performance curves refer to sound power levels. For determination of the lower sound pressure levels refer to diagram on "Technical information" page. Sound emission and acoustic information on page 10 on.

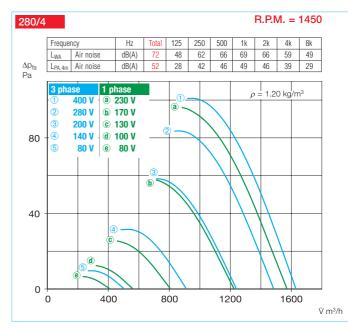
All dimensions in mm

Information

monnation	i ugo
Technical description	208
Selection chart	209
Information for planning	10 on

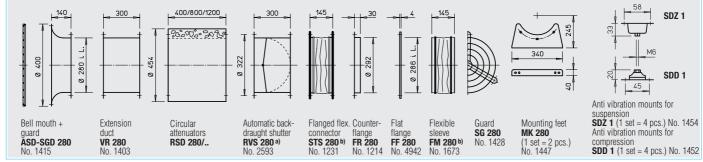
Page


Made to order designs


Alternative voltages, frequencies, protection classes, acid protection, high temperatures etc. are available on request.

For safety and correct use note the technical information on page 15 on.

Туре	Ref. no.	R.P.M.	Air flow volume (FID)	Motor power*	Voltage	Curr standard supply	rent* speed controlled	Wiring diagram	Maximum ai standard supply	r flow temp. speed controlled	Nominal weight (net)	5 step transformer controller Pole switch	Full motor protection starter using the motor thermal contacts		bration unts susp
		min ⁻¹	V m³/h	kW	V	А	А	No.	+°C	+°C	kg	Type Ref. no.	Type Ref. no.	Туре	Туре
1 Phase motor,	1 Phase motor, 1 ph. / 50 Hz, protection to IP 54														
VARW 280/4	6672	1330	1600	0.11	230	0.50	0.60	966	60	40	12.0	MWS 1,5 ¹⁾ 1947	MW 1579	SDD 1	SDZ 1
VARW 280/2	6659	2715	3350	0.79	230	3.70	4.90	967	60	40	14.0	MWS 7,5 ¹⁾ 1950	MW 1579	SDD 1	SDZ 1
3 Phase motor, 50 Hz, protection to IP 54															
VARD 280/4	6673	1370	1650	0.12	400	0.35	0.35	469	60	40	12.0	RDS 1 ^{1) 4)} 1314	MD 5849	SDD 1	SDZ 1
VARD 280/2	6674	2705	3315	0.80	400	1.52	1.64	469	60	40	13.5	RDS 2 ^{1) 4)} 1315	MD 5849	SDD 1	SDZ 1
Pole-switching	, 2 speed	l motor (Da	hlander wir	dings Y/YY), 3 ph./	50 Hz, pro	tection to	IP 54				Pole switch			
VARD 280/4/2	6775	1405/2810	1760/3500	0.14/0.91	400	0.44/1.78	—	472	60	—	16.0	PDA 12 ³⁾ 5081	M 3 ²⁾ 1293	SDD 1	SDZ 1
Explosion proo	f, E Ex de	e II B, 1 ph.	/ 50 Hz, ten	nperature c	lass T1-T3	8, protectio	on to IP 55								
VARW 280/4 Ex	6737	1330	1720	0.18	230	1.25	—	757	40	—	14.0	not permitted		SDD 1	SDZ 1
Explosion proo	f, E Exe I	l, 3 ph. / 50	Hz, temper	ature class	T1-T3, pr	otected to	IP 54								
VARD 280/4 Ex	6675	1400	1820	0.12	400	0.41	—	470	40	—	16.0	not permitted	not permitted	SDD 1	SDZ 1
VARD 280/2 Ex	6676	1860	3720	0.75	400	1.65	—	470	40	—	18.0	not permitted	not permitted	SDD 1	SDZ 1
* Ex models: For r	nominal va	alue of motor	r see informat	ion on page	16 ¹⁾ ir	ncludes full	motor prote	ection unit	2) includ	les operation	and spee	ed switch 3) se	e product page for flush	mounted ve	rsion


* Ex models: For nominal value of motor see information on page 16 1) includes full motor protection unit 4) Frequency inverter with integrated Sine filter, Type FU-BS 2,5, No. 5459, see product page FU.

Other accessories	Page							
^{b)} Accessories for ex-proof fans								
Flanged flexible conne Type STS 280 Ex Ref. r Flexible sleeve Type FM 280 Ex Ref. r	no. 2502							
Attenuators Shutters	421 on							
and grilles Speed controllers	487 on							
and switches	525 on							

Accessories Specification see page 231 on

a) For motorised shutters see accessory pages

^{b)} Types for explosion proof fans see above

Specification Casing

Manufactured in galvanised sheet steel with flanges on both sides to DIN 24155. Pt. 3. with fixed guide vanes and motor support.

Impeller

Optimised for high pressure and performance.

Specially developed mixed-flow curved impeller manufactured from impact resistant polymers.

Motor

Direct driven, maintenance free flange motor, totally enclosed with an aluminium casing and cooling fins, protected to IP 54. Sealed for life ball bearings with tropicalized protection of windings and interference-free. Optional drainage holes made to order (please state installation position).

Speed control

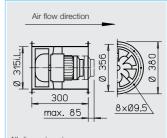
For all speed controllable models the current is given in the "speed controlled" column of the table below which must be used when selecting a controller (see controller column). The air flow volumes can be seen from the characteristic curves. If the fan is to be controlled by a frequency inverter without a sine filter, this must be stated when ordering. This requires a change of fan design and potential additional costs. Explosion proof fans are not controllable.

Electrical connection

Terminal box fitted externally on the casing as standard (IP 55).

Installation

Installation in any position. Ensure that motor drainage holes (where used) face downwards.


Motor protection

All models (3~ except ex proof) have thermal contacts as standard which must be connected to a full motor protection unit (see table below). With the 1 ph. ex-proof models thermal contacts are wired in series with the winding which automatically resets after cooling.

Models without thermal contacts must be protected by a conventional circuit breaker.

Sound levels

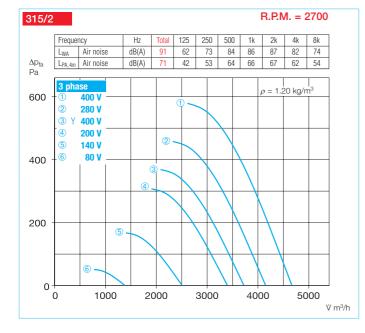
Data shown within the performance curves refer to sound power levels. For determination of the lower sound pressure levels refer to diagram on "Technical information" page. Sound emission and acoustic information on page 10 on.

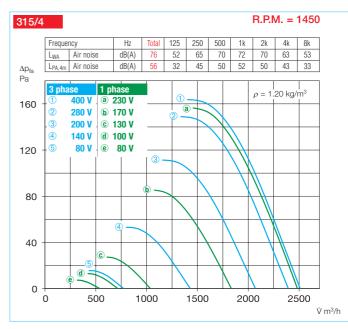
All dimensions in mm

Information

Information	. ugo
Technical description	208
Selection chart	209
Information for planning	10 on

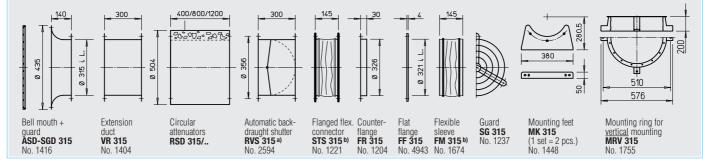
Page


Made to order designs


Alternative voltages, frequencies, protection classes, acid protection, high temperatures etc. are available on request.

For safety and correct use note the technical information on page 15 on.

Туре	Ref. no.	R.P.M.	Air flow volume (FID)	Motor power*	Voltage	Curr standard supply	rent* speed controlled	Wiring diagram	Maximum ai standard supply	r flow temp. speed controlled	Nominal weight (net)	5 step transformer controller Pole switch		Full motor protection starter using the motor thermal contacts		Anti vit mou comp	
		min ⁻¹	₿ m³/h	kW	V	А	А	No.	+°C	+°C	kg	Туре	Ref. no.	Туре	Ref. no.	Туре	Туре
1 Phase motor, 1 ph. / 50 Hz, protection to IP 54																	
VARW 315/4	6677	1440	2480	0.23	230	1.10	1.17	966	60	40	13.0	MWS 3 ¹⁾	1948	MW	1579	SDD 1	SDZ 1
3 Phase motor, 50 Hz, protection to IP 54																	
VARD 315/4	6678	1450	2510	0.22	400	0.60	0.70	469	60	40	13.0	RDS 1 ^{1) 4)}	1314	MD	5849	SDD 1	SDZ 1
Two-speed, 3 ph., 50 Hz, Y/△ switch, protection to IP 54																	
VARD 315/2/2	6679	1520/2650	2921/4670	1.29/1.35	$400Y/\Delta$	1.5/2.75	2.8	520	60	40	20.5	RDS 4 ¹⁾	1316	M 4 ²⁾	1571	SDD 1	SDZ 1
Pole-switching	, 2 speed	l motor (Da	hlander wir	dings Y/YY	'), 3 ph. /	50 Hz, pro	tection to	IP 54				Pole switch					
VARD 315/4/2	6777	1480/2890	2730/5340	0.42/1.83	400	1.2/3.3		472	60	—	20.5	PDA 12 ³⁾	5081	M 3 ²⁾	1293	SDD 1	SDZ 1
Explosion proo	f, E Ex de	e II B, 1 ph.	/ 50 Hz, ten	nperature c	lass T1-T3	, protectio	on to IP 55										
VARW 315/4 Ex	6738	1450	2680	0.18	230	1.25		757	40	—	15.0	not perm	itted	—	—	SDD 1	SDZ 1
Explosion proo	f, E Exe I	l, 3 ph. / 50	Hz, temper	ature class	T1-T3, pro	otected to	IP 54										
VARD 315/4 Ex	6680	1420	2610	0.37	400	1.14		470	40	—	17.0	not perm	itted	not pe	rmitted	SDD 1	SDZ 1
VARD 315/2 Ex	6681	2860	5260	1.50	400	3.15		470	40	—	23.0	not perm	itted	not pe	rmitted	SDD 1	SDZ 1
* Ex models: For r	nominal va	alue of motor	see informat	tion on page	16 ¹⁾ ir	cludes full	motor prote	ection unit	²⁾ includ	les operation	and spee	d switch	3) S66	e product pa	ge for flush n	nounted ve	rsion


4) Frequency inverter with integrated Sine filter, Type FU-BS 2,5, No. 5459, see product page FU.

Other accessories	Page
^{b)} Accessories for ex-	proof fans
Flanged flexible com Type STS 315 Ex Rei Flexible sleeve Type FM 315 Ex Ref	. no. 2503
Attenuators Shutters	421 on
and grilles Speed controllers	487 on
and switches	525 on

Accessories Specification see page 231 on

a) For motorised shutters see accessory pages

^{b)} Types for explosion proof fans see above

Specification Casing

Manufactured in galvanised sheet steel with flanges on both sides to DIN 24155, Pt. 3, with fixed guide vanes and motor support.

Impeller

Optimised for high pressure and performance.

Specially developed mixed-flow curved impeller manufactured from impact resistant polymers (models with R.P.M. = 2800 from hot dipped galvanised steel).

□ Motor

Direct driven, maintenance free flange motor, totally enclosed with an aluminium casing and cooling fins, protected to IP 54. Sealed for life ball bearings with tropicalized protection of windings and interference-free. Optional drainage holes made to order (please state installation position).

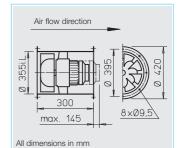
Speed control

For all speed controllable models the current is given in the "speed controlled" column of the table below which must be used when selecting a controller (see controller column). The air flow volumes can be seen from the characteristic curves. If the fan is to be controlled by a frequency inverter without a sine filter, this must be stated when ordering. This requires a change of fan design and potential additional costs. Explosion proof fans are not controllable.

Electrical connection

Terminal box fitted externally on the casing as standard (IP 55).

Installation


Installation in any position. Ensure that motor drainage holes (where used) face downwards.

Motor protection

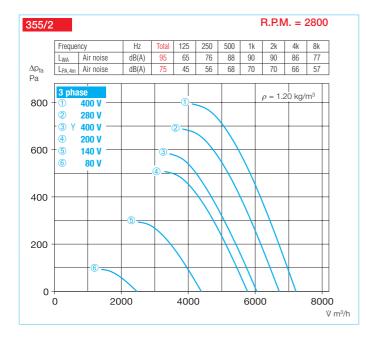
All models (excluding ex-proof models and model VARD 355/4/2) have thermal contacts as standard which must be connected to a full motor protection unit (see table below) for effective motor protection. Models without thermal contacts must be protected by a conventional circuit breaker.

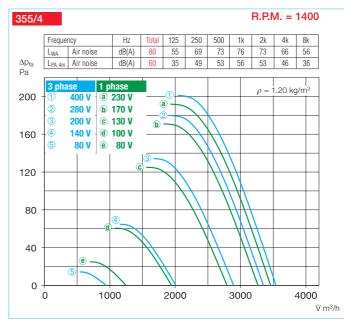
Sound levels

Data shown within the performance curves refer to sound power levels. For determination of the lower sound pressure levels refer to diagram on "Technical information" page. Sound emission and acoustic information on page 10 on.

Information	Page
Technical description	208
Selection chart	209
Information for planning	10 on

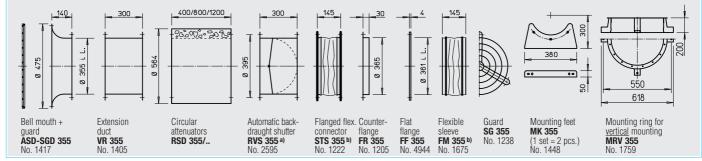
Made to order designs


Alternative voltages, frequencies, protection classes, acid protection, high temperatures etc. are available on request.


For safety and correct use note the technical information on page 15 on.

Туре	Ref. no.	R.P.M.	Air flow volume (FID)	Motor power*	Voltage	Curr standard supply	ent* speed controlled	Wiring diagram	Maximum a standard supply	ir flow temp. speed controlled	Nominal weight (net)	5 step tran contro Pole sw	ller	starter usi	r protection ng the motor contacts		bration unts susp
		min ⁻¹	₿ m³/h	kW	V	А	А	No.	+°C	+°C	kg	Туре	Ref. no.	Туре	Ref. no.	Туре	Туре
1 Phase motor,	1 ph. / 5	50 Hz, prote	ction to IP	54													
VARW 355/4	6682	1380	3470	0.37	230	3.30	2.35	966	60	40	21.0	MWS 3 ¹⁾	1948	MW	1579	SDD 1	SDZ 1
3 Phase motor,	50 Hz, pi	rotection to	IP 54														
VARD 355/4	6683	1440	3550	0.40	400	0.87	1.20	469	60	40	15.5	RDS 1 ^{1) 5)}	1314	MD	5849	SDD 1	SDZ 1
Two-speed, 3 p	h., 50 Hz	, Y/ $ riangle$ swite	ch, protectio	on to IP 54													
VARD 355/2/2	6684	2415/2790	6040/7220	2.06/2.81	$400Y/\Delta$	3.40/5.40		520	60	30	21.5	RDS 7 ¹⁾	1578	M 4 ²⁾	1571	SDD 1	SDZ 1
Pole-switching	2 speed	motor (Da	hlander win	dings Y/YY), 3 ph. /	50 Hz, prot	tection to	IP 54				Pole switcl	h				
VARD 355/4/2	6779	1470/2870	3830/7500	0.48/3.11	400	1.35/5.50		471	40	—	29.0	PDA 12 ³⁾	5081	M 3 ²⁾	1293	SDD 1	SDZ 1
Explosion proof	i, E Exe II	, 3 ph. / 50	Hz, temper	ature class	T1-T3, pr	otected to	IP 54										
VARD 355/4 Ex	6685	1420	3740	0.37	400	1.14		470	40	—	19.0	not pern	nitted	not pe	ermitted	SDD 1	SDZ 1
VARD 355/2 Ex	⁴⁾ 6686	2860	7580	2.50	400	4.85/2.77		498	40	—	33.0	not pern	nitted	not pe	ermitted	SDD 1	SDZ 1

* Ex models: For nominal value of motor see information on page 16 ¹⁾ includes full motor protection unit ²⁾ includes operation and speed switch ³⁾ see product page for flush mounted version ⁴⁾ Vibration monitoring is necessary (on site) pursuant to DIN EN 14986. ⁵⁾ Frequency inverter with integrated Sine filter, Type FU-BS 2,5, No. 5459, see product page FU.



Other accessories	Page
^{b)} Accessories for ex-p	roof fans
Flanged flexible connu Type STS 355 Ex Ref. Flexible sleeve Type FM 355 Ex Ref.	no. 2504
Attenuators Shutters	421 on
and grilles Speed controllers	487 on
and switches	525 on

Accessories Specification see page 231 on

a) For motorised shutters see accessory pages

^{b)} Types for explosion proof fans see above

Specification Casing

Manufactured in galvanised steel with flanges on both sides to DIN 24155, Pt. 3, vanes and fixed motor support. Models with R.P.M. = 2800 with welded casing made from hot dipped galvanised steel.

Impeller

Optimised for high pressure and performance.

Specially developed mixed-flow curved impeller manufactured from hot dipped galvanised steel.

Motor

Direct driven, maintenance free flange motor, totally enclosed with an aluminium casing and cooling fins, protected to IP 54. Sealed for life ball bearings with tropicalized protection of windings and interference-free. Optional drainage holes made to order (please state installation position).

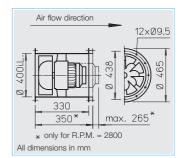
Speed control

For all speed controllable models the current is given in the "speed controlled" column of the table below which must be used when selecting a controller (see controller column). The air flow volumes can be seen from the characteristic curves. If the fan is to be controlled by a frequency inverter without a sine filter, this must be stated when ordering. This requires a change of fan design and potential additional costs. Explosion proof fans are not controllable.

Electrical connection

Terminal box fitted externally on the casing as standard (IP 55).

Installation


Installation in any position. Ensure that motor drainage holes (where used) face downwards.

Motor protection

All models (excluding ex-proof models and model VARD 400/4/2) have thermal contacts as standard which must be connected to a full motor protection unit (see table below) for effective motor protection. Models without thermal contacts must be protected by a conventional circuit breaker.

Sound levels

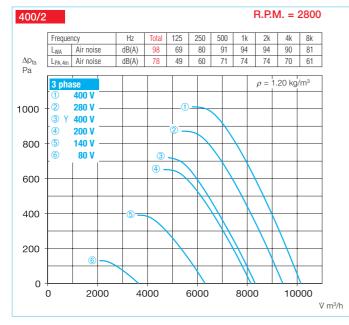
Data shown within the performance curves refer to sound power levels. For determination of the lower sound pressure levels refer to diagram on "Technical information" page. Sound emission and acoustic information on page 10 on.

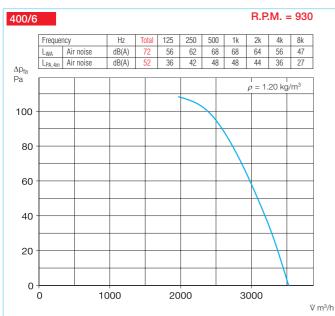
Information

internation	. ugo
Technical description	208
Selection chart	209
Information for planning	10 on

Page

Made to order designs

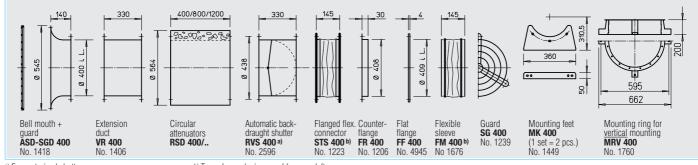

Alternative voltages, frequencies, protection classes, acid protection, high temperatures etc. are available on request.


For safety and correct use note the technical information on page 15 on.

Туре	Ref. no.	R.P.M.	Air flow volume (FID)	Motor power*	Voltage	Curr standard supply	rent* speed controlled	Wiring diagram	Maximum ai standard supply	r flow temp. speed controlled	weight	5 step trans control Pole sw	ler	starter usir	r protection ng the motor contacts	Anti vil mou comp	
		min ⁻¹	V m³∕h	kW	V	А	А	No.	+°C	+°C	kg	Туре	Ref. no.	Туре	Ref. no.	Туре	Туре
1 Phase motor,	1 ph. /	50 Hz, prote	ection to IP 5	54													
VARW 400/4	6688	1375	5130	0.70	230	3.00	3.35	967	60	40	22.5	MWS 5 ¹⁾	1949	MW	1579	SDD 1	SDZ 1
3 Phase motor,	50 Hz, p	rotection to	IP 54														
VARD 400/4	6690	1400	5240	0.72	400	1.95	2.00	469	60	40	22.5	RDS 4 ^{1) 5)}	1316	MD	5849	SDD 1	SDZ 1
Two-speed, 3 p	h., 50 Hz	, Y/ $ riangle$ swite	ch, protectio	n to IP 54													
VARD 400/2/2	6691	2475/2800	8320/10610	3.63/4.95	$400Y/\Delta$	5.75/7.95	—	520	60	40	74.0	RDS 11 ¹⁾	1332	M 4 ²⁾	1571	SDD 1	SDZ 2
Pole-switching	2 speed	l motor (Da	hlander win	dings Y/YY), 3 ph./	50 Hz, pro	tection to	IP 54				Pole switch					
VARD 400/4/2	6782	1400/2890	5220/10700	0.80/5.90	400	2.43/9.13	—	471	40	—	74.0	PDA 12 ³⁾	5081	M 3 ²⁾	1293	SDD 1	SDZ 2
Explosion proof	, E Exe I	l, 3 ph. / 50	Hz, tempera	ature class	T1-T3, pro	otected to	IP 54										
VARD 400/6 Ex	6692	920	3465	0.25	400	0.97	—	470	40	—	21.0	not perm	itted	not pe	rmitted	SDD 1	SDZ 1
VARD 400/4 Ex	6693	1400	5360	0.55	400	1.51	—	470	40	—	25.0	not perm	itted	not pe	rmitted	SDD 1	SDZ 1
VARD 400/2 Ex	4) 6694	2895	10950	4.60	400	8.20	—	498	40	—	83.0	not perm	itted	not pe	ermitted	SDD 2	SDZ 2

* Ex models: For nominal value of motor see information on page 16

1) includes full motor protection unit 2) includes operation and speed switch 3) see product page for flush mounted version 4) Vibration monitoring is necessary (on site) pursuant to DIN EN 14986. 5) Frequency inverter with integrated Sine filter, Type FU-BS 2,5, No. 5459, see product page FU.



400/4										R.P.M	VI. =	1450
	Freque	ncy		Hz	Total	125	250	500	1k	2k	4k	8k
	L _{WA}	Air nois	е	dB(A)	83	59	72	77	79	77	70	60
Δp_{fa}	L _{PA,4m}	Air nois	е	dB(A)	63	39	52	57	59	57	50	40
Pa						1		-		-	00	4-3
250 -	3 pha	400 V		hase 230 V		(j	_	_	$\rho = 1.$.20 kg	/m°
	2	400 V 280 V	-	230 V 170 V		a		\mathbf{X}				
	3	200 V	1 -	130 V		2		\mathbf{X}			-	
200 -	4	140 V	-	100 V		(b) —				_	_	
	5	80 V	e	80 V		—	\land	N				
450	-		1 -		3	-						
150 -								\mathbf{N}		X		
100				C					$\langle \rangle$	M		
100 -				4					X	$\langle \rangle$		
50			~			\backslash			$\langle \rangle$		\mathbf{N}	
50 -		5	@	$\overline{\}$			Ν		\sum	$\langle \rangle$	M	
0		e					\backslash			\mathbf{n}	\square	
0 -)	10	00	20	00	30	000	4	000		5000)
												١

Other accessories	Page
^{b)} Accessories for ex-p	roof fans
Flanged flexible connection Type STS 400 Ex Ref. Flexible sleeve Type FM 400 Ex Ref.	no. 2505
Attenuators	421 on
Shutters and grilles	487 on
Speed controllers and switches	525 on

Accessories Specification see page 231 on

a) For motorised shutters see accessory pages b) Types for explosion proof fans see left page

Specification Casing

Manufactured in galvanised steel with flanges on both sides to DIN 24155, Pt. 3, vanes and fixed motor support. Models with R.P.M. = 2800 with welded casing made from hot dipped galvanised steel.

Impeller

Optimised for high pressure and performance. Specially developed mixed-flow curved impeller manufactured from hot dipped galvanised steel.

Motor

Direct driven, maintenance free flange motor, totally enclosed with an aluminium casing and cooling fins, protected to IP 54. Sealed for life ball bearings with tropicalized protection of windings and interference-free. Optional drainage holes made to order (please state installation position).

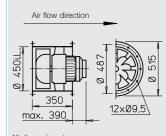
Speed control

For all speed controllable models the current is given in the "speed controlled" column of the table below which must be used when selecting a controller (see controller column). The air flow volumes can be seen from the characteristic curves. If the fan is to be controlled by a frequency inverter without a sine filter, this must be stated when ordering. This requires a change of fan design and potential additional costs. Explosion proof fans are not controllable.

Electrical connection

Terminal box fitted externally on the casing as standard (IP 55).

Installation


Installation in any position. Ensure that motor drainage holes (where used) face downwards.

Motor protection

All models (excluding ex-proof models) have thermal contacts and PTC Thermistors as standard which must be connected to a full motor protection unit (see table below) for effective motor protection. Models without thermal contacts must be protected by a conventional circuit breaker.

Sound levels

Data shown within the performance curves refer to sound power levels. For determination of the lower sound pressure levels refer to diagram on "Technical information" page. Sound emission and acoustic information on page 10 on.

All dimensions in mm

Information

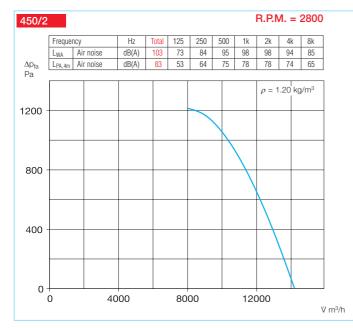
Technical description	208
Selection chart	209
Information for planning	10 on

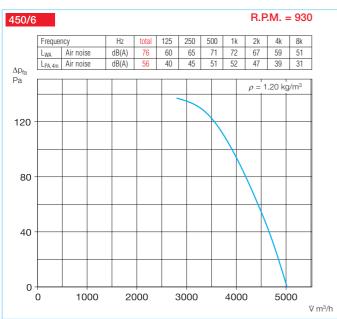
Page

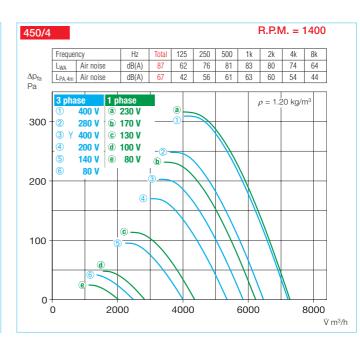
Made to order designs

Alternative voltages, frequencies, protection classes, acid protection, high temperatures etc. are available on request.

For safety and correct use note the technical information on page 15 on.

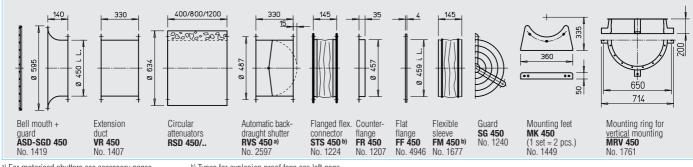

Туре	Ref. no.	R.P.M.	Air flow volume (FID)	Motor power*	Voltage	Curr standard supply	ent* speed controlled	Wiring diagram	Maximum a standard supply	ir flow temp. speed controlled	Nominal weight (net)	5 step transforme controller Pole switch	starter usir	r protection ng the motor contacts	Anti vil mou comp	
		min ⁻¹	V m³/h	kW	V	A	А	No.	+°C	+°C	kg	Type Ref. n	0. Type	Ref. no.	Туре	Туре
1 Phase motor,	1 ph. /	50 Hz, prote	ection to IP	54												
VARW 450/4	6736	1330	7180	1.47	230	6.50	7.00	968	60	40	45.0	MWS 7,5 ¹⁾ 195	0 MW	1579	SDD 1	SDZ 1
3 Phase motor,	50 Hz, p	rotection to	IP 54													
VARD 450/2	6698	2950	14210	8.03	400	13.8	—	776	60	—	95.0	FU-CS18 ¹⁾⁵⁾ 546	9 MSA ³⁾	1289	SDD 2	SDZ 2
Two-speed, 3 pl	h., 50 Hz	, Y/ $ riangle$ swite	ch, protectio	on to IP 54												
VARD 450/4/4	6697	1100/1370	5930/7390	0.74/1.00	$400Y/\Delta$	1.2/2.3	2.3	520	60	40	45.0	RDS 4 ¹⁾ 131	6 M 4 ²⁾	1571	SDD 1	SDZ 1
Explosion proof	, E Exe I	l, 3 ph. / 50	Hz, temper	ature class	T1-T3, pr	otected to	IP 54									
VARD 450/6 Ex	6699	900	5020	0.25	400	0.99	—	470	40	—	48.0	not permitted	not pe	ermitted	SDD 1	SDZ 1
VARD 450/4 Ex	6700	1425	7640	1.10	400	2.55	—	470	40	—	51.0	not permitted	not pe	ermitted	SDD 1	SDZ 1
VARD 450/2 Ex4	•) 6701	2930	15810	7.50	400	14.10	—	498	40	—	155.0	not permitted	not pe	ermitted	SDD 2	SDZ 2


* Ex models: For nominal value of motor see information on page 16


1) includes full motor protection unit 2) includes operation and speed switch 4) Vibration monitoring is necessary (on site) pursuant to DIN EN 14986. 5) with integrated Sine filter, see product page FU

3) for PTC Thermistor temp. sensor

222



Other accessories	Page
^{b)} Accessories for ex-	oroof fans
Flanged flexible conn Type STS 450 Ex Ref. Flexible sleeve Type FM 450 Ex Ref.	no. 2506
Attenuators	421 on
Shutters and grilles	487 on
Speed controllers and switches	525 on

Accessories Specification see page 231 on

a) For motorised shutters see accessory pages

^{b)} Types for explosion proof fans see left page

Specification Casing

Manufactured in galvanised steel with flanges on both sides to DIN 24155, Pt. 3, vanes and fixed motor support. Models with R.P.M. = 2800 with welded casing made from hot dipped galvanised steel.

□ Impeller

Optimised for high pressure and performance. Specially developed mixed-flow curved impeller manufactured

from hot dipped galvanised steel.

Motor

Direct driven, maintenance free flange motor, totally enclosed with an aluminium casing and cooling fins, protected to IP 54. Sealed for life ball bearings with tropicalized protection of windings and interference-free. Optional drainage holes made to order (please state installation position).

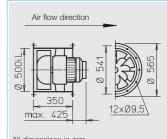
Speed control

For all speed controllable models the current is given in the "speed controlled" column of the table below which must be used when selecting a controller (see controller column). The air flow volumes can be seen from the characteristic curves. If the fan is to be controlled by a frequency inverter without a sine filter, this must be stated when ordering. This requires a change of fan design and potential additional costs. Explosion proof fans are not controllable.

Electrical connection

Terminal box fitted externally on the casing as standard (IP 55).

Installation


Installation in any position. Ensure that motor drainage holes (where used) face downwards.

Motor protection

All models (excluding ex-proof models) have thermal contacts and PTC Thermistors as standard which must be connected to a full motor protection unit (see table below) for effective motor protection. Models without thermal contacts must be protected by a conventional circuit breaker.

□ Sound levels

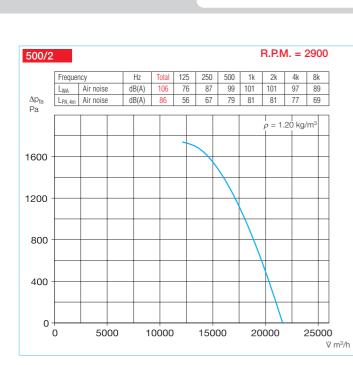
Data shown within the performance curves refer to sound power levels. For determination of the lower sound pressure levels refer to diagram on "Technical information" page. Sound emission and acoustic information on page 10 on.

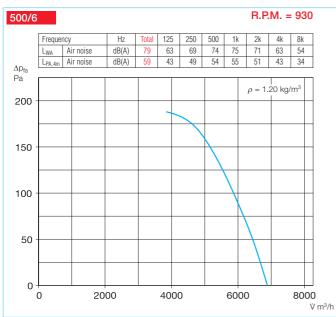
All dimensions in mm

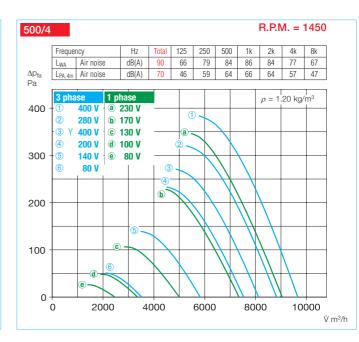
Information

Technical description	208
Selection chart	209
Information for planning	10 on

Page

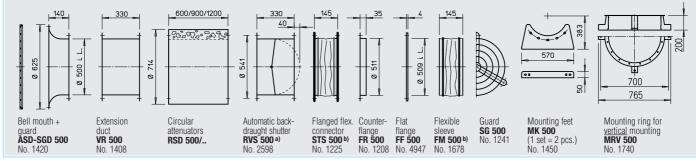

Made to order designs


Alternative voltages, frequencies, protection classes, acid protection, high temperatures etc. are available on request.


For safety and correct use note the technical information on page 15 on.

Туре	Ref. no.	R.P.M.	Air flow volume	Motor power*	Voltage	Curr standard	ent* speed	Wiring diagram	Maximum ai standard	ir flow temp. speed	Nominal weight	5 step transfor controller		Full motor starter usin	protection a the motor	Anti vil mou	
			(FID)	pono		supply	controlled	anagram	supply	controlled	(net)	Pole switcl			contacts	comp	susp
		min-1	V m³/h	kW	V	А	А	No.	+°C	+°C	kg	Type Re	f. no.	Туре	Ref. no.	Туре	Туре
1 Phase moto	r, 1 ph./	50 Hz, prot	ection to IP	54													
VARW 500/4	6739	1340	9920	2.02	230	9.10	9.10	968	60	40	70.0	MWS 10 ¹⁾	1946	MW	1579	SDD 2	SDZ 2
3 Phase moto	r, 50 Hz, j	protection t	o IP 54														
VARD 500/2	6705	2935	21730	15.70	400	29/16.7	—	776	60	—	180.0	FU-CS32 ¹⁾⁵⁾	5471	MSA ³⁾	1289	SDD 2	SDZ 3
Two-speed, 3	ph., 50 H	z, Y/ $ riangle$ swi	tch, protectio	on to IP 54													
VARD 500/4/4	6704	1120/1370	8360/10070	1.2/1.8	$400Y/\Delta$	2.1/3.9	3.9	520	60	40	70.0	RDS 7 ¹⁾	1578	M 4 ²⁾	1571	SDD 2	SDZ 2
Explosion pro	of, E Exe	ll, 3 ph. / 5	0 Hz, temper	ature class	T1-T3, pr	otected to	IP 54										
VARD 500/6 E	x 6706	930	6810	0.55	400	1.83	—	470	40	—	70.0	not permitte	ed	not per	rmitted	SDD 2	SDZ 2
VARD 500/4 E	x 6707	1420	10470	2.00	400	4.65	—	470	40	—	75.0	not permitte	ed	not per	rmitted	SDD 2	SDZ 2
VARD 500/2 E	x⁴⁾ 6708	2930	21760	12.50	400	23.50	—	498	40	—	215.0	not permitte	ed	not per	rmitted	SDD 3	SDZ 3
* Ex models: Fo	r nominal	value of moto	or see informa	tion on page	16 1)	includes ful	l motor prot	tection uni	t ²⁾ inclu	ides operation	n and spe	ed switch		3) for PTC 1	hermistor ter	np. sensor	

* Ex models: For nominal value of motor see information on page 16 1) includes full motor protection unit 4) Vibration monitoring is necessary (on site) pursuant to DIN EN 14986. 5) with integrated Sine filter, see product page FU 3) for PTC Thermistor temp. sensor



Other accessories	Page
^{b)} Accessories for ex-p	proof fans
Flanged flexible conn Type STS 500 Ex Ref. Flexible sleeve Type FM 500 Ex Ref.	no. 2507
Attenuators	421 on
Shutters and grilles Speed controllers	487 on
and switches	525 on

Accessories Specification see page 231 on

a) For motorised shutters see accessory pages

b) Types for explosion proof fans see left page

Specification Casing

Manufactured in galvanised sheet steel with flanges on both sides to DIN 24155, Pt. 3, with fixed guide vanes and motor support.

Impeller

Optimised for high pressure and performance. Specially developed mixed-flow curved impeller manufactured from hot dipped galvanised steel.

Motor

Direct driven, maintenance free flange motor, totally enclosed with an aluminium casing and cooling fins, protected to IP 54. Sealed for life ball bearings with tropicalized protection of windings and interference-free. Optional drainage holes made to order (please state installation position).

Speed control

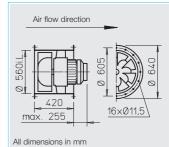
The voltage controllable models are identified by a value in the "speed controlled" column of the table below which must be used when selecting a controller (see controller column). The air flow volumes can be seen from the characteristic curves. Explosion proof fans are not controllable.

Electrical connection

Terminal box fitted externally on the casing as standard (IP 55).

Installation

Installation in any position. Ensure that motor drainage holes (where used) face downwards.


Motor protection

All models (excluding ex-proof models and pole switch models) have thermal contacts and PTC Thermistors as standard which must be connected to a full motor protection unit (see table below) for effective motor protection.

Models without thermal contacts must be protected by a conventional circuit breaker.

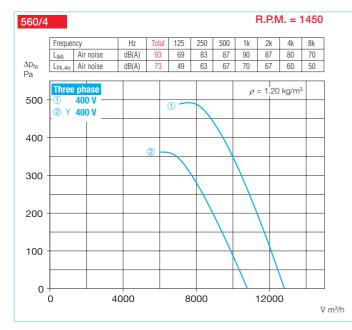
Sound levels

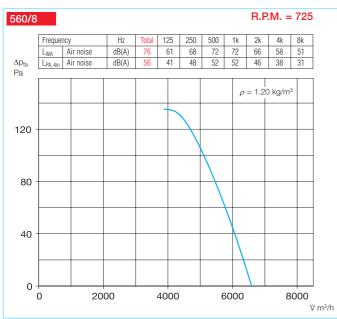
Data shown within the performance curves refer to sound power levels. For determination of the lower sound pressure levels refer to diagram on "Technical information" page. Sound emission and acoustic information on page 10 on.

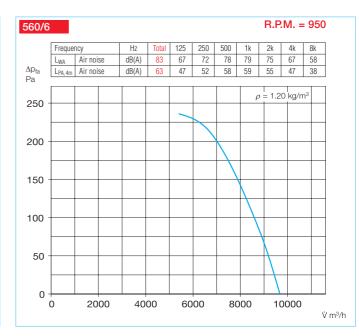
Information

	3 -
Technical description	208
Selection chart	209
Information for planning	10 on

Page

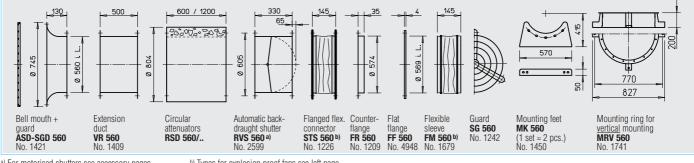

Made to order designs


Alternative voltages, frequencies, protection classes, acid protection, high temperatures etc. are available on request.


For safety and correct use note the technical information on page 15 on.

Туре	Ref. no.	R.P.M.	Air flow volume (FID)	Motor power*	Voltage	standard	rent* speed controlled	Wiring diagram	Maximum ai standard supply			5 step transformer controller Pole switch		Full motor protection starter using the motor thermal contacts		Anti vibration mounts comp susp	
		min ⁻¹	V m³/h	kW	V	A	А	No.	+°C	+°C	kg	Туре	Ref. no.	Туре	Ref. no.	Туре	Туре
Two-speed, 3 ph., 50 Hz, Y/△ switch, protection to IP 54																	
VARD 560/4/4	6711	1130/1380	10780/12810	2.20/3.00	$400Y/\Delta$	3.5/5.9	6.5	520	60	40	95.0	RDS 7 ¹⁾	1578	M 4 ²⁾	1571	SDD 2	SDZ 2
Pole-switching, 2 speed motor (Dahlander windings Y/YY), 3 ph. / 50 Hz, protection to IP 54 Pole switch																	
VARD 560/8/4	6790	705/1440	6590/13570	0.90/3.60	400	2.9/8.3	—	471	60	—	100.0	PDA 12 ³⁾	5081	—	—	SDD 2	SDZ 2
Explosion proo	f, E Exe	II, 3 ph. / 5	50 Hz, temper	ature class	T1-T3, pr	otected to	IP 54										
VARD 560/8 Ex	6712	700	7120	0.37	400	1.61	—	470	40	—	85.0	not perm	itted	not per	rmitted	SDD 2	SDZ 2
VARD 560/6 Ex	6713	900	9360	1.10	400	3.10	—	470	40	—	90.0	not perm	itted	not per	rmitted	SDD 2	SDZ 2
VARD 560/4 Ex	4) 6714	1440	14980	3.60	400	7.70	—	498	40	—	105.0	not perm	itted	not per	rmitted	SDD 2	SDZ 2
* Ex models: For	nominal	value of mo	tor see informa	ition on page	16 1)	includes ful	I motor prof	tection uni	t ²⁾ inclu	ides operation	n and spe	ed switch	³⁾ Se	e product pa	ige for flush r	mounted ve	ersion

* Ex models: For nominal value of motor see information on page 16 4) Vibration monitoring is necessary (on site) pursuant to DIN EN 14986.



Other accessorie	s Page								
^{b)} Accessories for ex-proof fans									
Flanged flexible cor Type STS 560 Ex Re Flexible sleeve Type FM 560 Ex Re	ef. no. 2508								
Attenuators	421 on								
Shutters and grilles	487 on								
Speed controllers and switches	525 on								

Accessories Specification see page 231 on

b) Types for explosion proof fans see left page

Specification Casing

Manufactured in galvanised sheet steel with flanges on both sides to DIN 24155, Pt. 3, with fixed guide vanes and motor support, hot dipped galvanised.

Impeller

Optimised for high pressure and performance. Specially developed mixed-flow curved impeller manufactured from hot dipped galvanised steel.

Motor

Direct driven, maintenance free flange motor, totally enclosed with an aluminium casing and cooling fins, protected to IP 54. Sealed for life ball bearings with tropicalized protection of windings and interference-free. Optional drainage holes made to order (please state installation position).

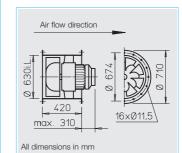
Speed control

Stepless (0-100%) by using a frequency inverter (excluding pole switch models). If the fan is to be controlled by a frequency inverter without a sine filter, this must be stated when ordering. This requires a change of fan design and potential additional costs. Explosion proof fans are not controllable.

Electrical connection

Terminal box fitted externally on the casing as standard (IP 55).

Installation


Installation in any position. Ensure that motor drainage holes (where used) face downwards.

Motor protection

Model VARD 630/4 has PTC thermistors which must be connected to a full motor protection unit (see table below) for effective motor protection. Models without thermal contacts must be protected by a conventional circuit breaker.

Sound levels

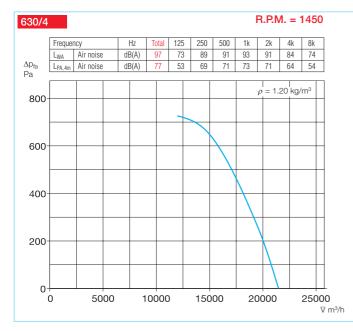
Data shown within the performance curves refer to sound power levels. For determination of the lower sound pressure levels refer to diagram on "Technical information" page. Sound emission and acoustic information on page 10 on.

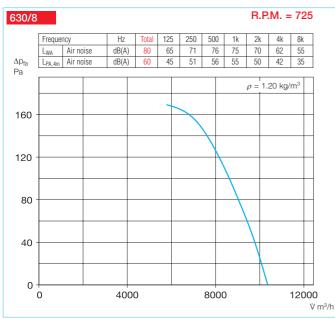
mormation	Fage
Technical description	208
Selection chart	209
Information for planning	10 on

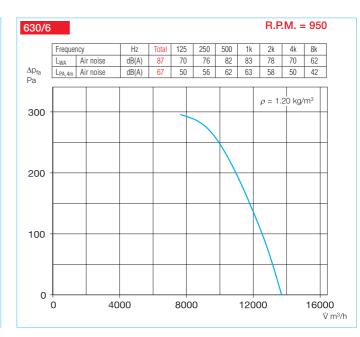
Made to order designs

Alternative voltages, frequencies, protection classes, acid protection, high temperatures etc. are available on request.

For safety and correct use note the technical information on page 15 on.

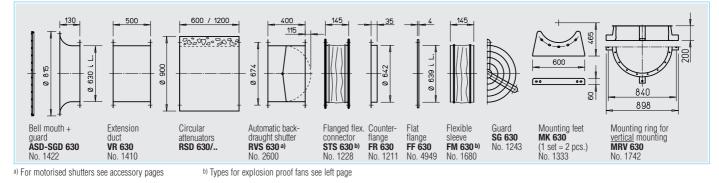

Туре	Ref. no.	R.P.M.	Air flow volume (FID)	Motor power*	Voltage	Curr standard supply	rent* speed controlled	Wiring diagram	Maximum ai standard supply	ir flow temp. speed controlled	Nominal weight (net)	5 step trai contro Pole s	oller	Full motor starter using thermal o	the motor	Anti vit mou comp	
		min ⁻¹	∀m³/h	kW	V	А	А	No.	+°C	+°C	kg	Туре	Ref. no.	Туре	Ref. no.	Туре	Туре
3 Phase motor, 50 Hz, protection to IP 54																	
VARD 630/4	6717	1440	21320	6,20	400	12.0/6.9		776	60	—	145.0	FU-BS 14	1) 5463	MSA ⁴⁾	1289	SDD 2	SDZ 2
Pole-switching, 2 speed motor (Dahlander windings Y/YY), 3 ph. / 50 Hz, protection to IP 54 Pole switch																	
VARD 630/8/4	6792	715/1430	10590/21170	1,40/5,50	400	5.0/12.0		471	60	—	145.0	PDA 12 ³⁾	5081	_	—	SDD 2	SDZ 2
Explosion proc	of, E Exe	II, 3 ph. / 5	0 Hz, temper	ature class	T1-T3 , pr	otection to	IP 54										
VARD 630/8 Ex	K 6718	700	10220	0,95	400	2.75		470	40	—	110.0	not per	mitted	not per	mitted	SDD 2	SDZ 2
VARD 630/6 Ex	K 6719	950	13990	1,90	400	4.70	—	470	40	—	130.0	not per	mitted	not per	mitted	SDD 2	SDZ 2
VARD 630/4 Ex	(⁵⁾ 6720	1435	21400	6,80	400	13.1	—	498	40	—	165.0	not per	mitted	not per	mitted	SDD 2	SDZ 3
* Ex models: For	nominal	value of moto	or see informa	tion on page	16 1)	includes ful	I motor prot	ection uni	t and Sine filf	ter 2) ir	ncludes o	peration an	d speed s	witch			


3) see product page for flush mounted version


4) for PTC Thermistor temp. sensor

) includes operation and speed switch

5) Vibration monitoring is necessary (on site) pursuant to DIN EN 14986.



Other accessories	Page								
^{b)} Accessories for ex-proof fans									
Flanged flexible conn Type STS 630 Ex Ref. Flexible sleeve Type FM 630 Ex Ref.	no. 2509								
Attenuators Shutters	421 on								
and grilles	487 on								
Speed controllers and switches	525 on								

Accessories Specification see page 231 on

Axial and VAR fans

For everything to run like clockwork during installation.

INSTALLATION ACCESSORIES **IN-LINE FANS**

Whatever is needed for installation and line connection: The wide range available from Helios includes the matching system components. From the suction nozzle to the electrical backdraught shutters and the vibration dampers.

ATTENUATORS AIR FILTERS HEATER BATTERIES

B

Q

Helios air treatment components ensure clean, warm and smooth air. The extensive range includes all sizes and powers, perfectly coordinated to Helios fans. This allows the necessary flexibility in terms of planning and installation.

BACKDRAUGHT **SHUTTERS** VENTILATION GRILLES

Weather-proof and anti-corrosive. Long service life, made from unbreakable UV-resistant polymer. Helios backdraught shutters and weather protection grilles have pleasant shapes, impressive robustness and are easy to install.

CONTROLLERS **INVERTERS SWITCHES**

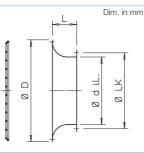
In addition to the special installation accessories for in-line fans, Helios offers a variety of regulation, control and switching devices, which are perfectly tailored to the in-line fans.

231°n 421°n 487°n 525°n

Dim. in mm

0 0

ASD-SGD



Bell mouth +

Туре

ASD 200* ASD-SGD 225 ASD-SGD 250 ASD-SGD 280 ASD-SGD 315 ASD-SGD 355 ASD-SGD 400 ASD-SGD 450 ASD-SGD 500 ASD-SGD 560

and large inlet from hot dippe steel. Connec

	<u>L</u>	+	Į <u>,</u>							
Guai to cc coate Ø 80	ed), protection	intake-si galvanise	guard for	ed t (fro	- guard tradius. Made ed galvanised sheet ction side with flange					
Туре	Weight in kg	ØLK	Ødi.L.	L	ØD	Ref. no.				
SG 2	0.9	235	203	140	310	1388				
SG 2	2.5	259	225	140	345	1413				
SG 2	2.8	286	250	140	370	1414				
SG 2	3.2	322	280	140	400	1415				
SG 3	3.5	356	315	140	435	1416				
SG 3	4.0	395	355	140	475	1417				
SG 4	4.5	438	400	140	545	1418				
SG 4	5.7	487	450	140	595	1419				
SG 5	6.3	541	500	140	625	1420				

560

630

710

800

900

1000

rd

SG

over impeller opening. Powdered, colour: silver-metallic (from 00 galvanised).

Dimensions and holes to match fan-flange tube nom. size DIN 24155, Pt. 2. Protection to DIN EN ISO 13857.

Туре	Ref. no.	Ød	ØLK	Weight in kg	Number of fixing points
SG 200	1216	190	235	0.1	3
SG 225	1215	224	259	0.2	3
SG 250	1236	241	286	0.2	3
SG 280	1428	270	322	0.3	4
SG 315	1237	310	356	0.4	4
SG 355	1238	350	395	0.4	4
SG 400	1239	390	438	0.5	3
SG 450	1240	450	487	0.6	3
SG 500	1241	490	541	0.7	3
SG 560	1242	550	605	0.9	4
SG 630	1243	630	674	1.5	4
SG 710	1244	710	751	1.8	4
SG 800	1245	790	837	2.2	4
SG 900	1246	890	934	2.7	4
SG 1000	1290	990	1043	3.5	4

ASD-SGD 630

ASD-SGD 710

ASD-SGD 800

ASD-SGD 900

ASD-SGD 1000

' without guard

1421

1422

1423

1424

1309

1310

745

815

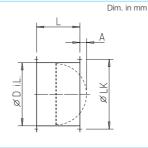
955

1060

1140

1240

130


130

200

200

200

200

605

674

751

837

934

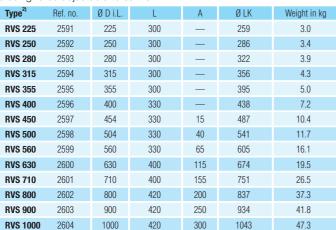
1043

7.0

7.6

19.5

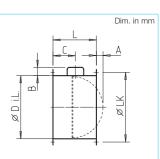
22.3


25.0

28.5

RVM

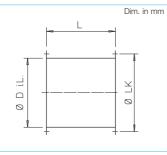
Automatic backdraught shutterwith spring closing¹⁾


Horizontal installation for air flow in any direction. Vertical for with air flow direction going upwards. Automatic opening on fan operation. Spring mechanism for closing. Closing force adjustable to suit fan power and installation position. Spring mechanism outside the air flow. Shutters and casing manufactured from galvanised steel, ND 225-560 shutters made from aluminium. Flanges on both sides, drillings to DIN 24155, Pt. 2.

¹⁾ Pressure loss diagram see page 490

2) Ambient temperature -30 to +100 °C

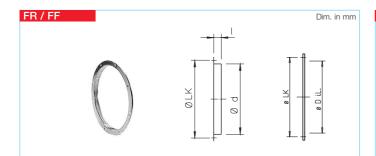
Motorised backdraught shutter¹⁾ as RVS, but with spring reversing motor (outside the air flow). Installation in any position vertically and horizontally. Recommended electrical connection in parallel to fan. Connection with 0.9 m long lead.


Ambient temperature	−30 to +60 °C
Protection class	IP 54
Voltage/Frequency	230 V AC, 50/60 Hz
Power	
- to Ø 560/from Ø 630) 14 W/6.5 W
Opening time approx.	75 sec.
Wiring diagram no.	380.1

Type ³⁾	Ref. no.	ØDi.L.	В	С	L	А	ØLK	Weight in kg
RVM 225	2575	225	95	130	300	—	259	3.3
RVM 250	2576	250	95	130	300	—	286	3.7
RVM 280	2577	280	95	130	300	—	322	4.2
RVM 315	2578	315	95	130	300	—	356	4.6
RVM 355	2579	355	95	130	300	—	395	5.3
RVM 400	2580	400	95	130	330	—	438	7.5
RVM 450	2581	454	95	130	330	15	487	10.7
RVM 500	2582	504	95	130	330	40	541	12.0
RVM 560	2583	560	95	130	330	65	605	16.4
RVM 630	2609	630	150	225	400	115	674	21.0
RVM 710	2610	710	150	225	400	155	751	28.0
RVM 800	2614	800	150	225	420	200	837	37.8
RVM 900	2615	900	150	225	420	250	934	42.3
RVM 1000 ³	* 2616	1000	150	225	420	300	1043	47.8

³⁾ Type RVM not for use in Ex-areas. *RVM 1000 only for horizontal flow.

Dim. in mm



Extension duct

Ducting with flanges on both sides and holes to DIN 24155, Pt. 2. Manufactured from galvanised steel, to elongate the fan casing. For models where the motor protrudes from the casing when installed into ducting. Avoids drops in performance at free extract.

Туре	Ref. no.	ØDi.L.	L	ØLK	Weight in kg
VR 225	1401	225	300	259	2.5
VR 250	1402	250	300	286	2.8
VR 280	1403	280	300	322	3.2
VR 315	1404	315	300	356	3.5
VR 355	1405	355	300	395	4.0
VR 400	1406	400	330	438	6.0
VR 450	1407	454	330	487	9.0
VR 500	1408	504	330	541	10.0
VR 560	1409	560	500	605	14.0
VR 630	1410	630	500	674	15.5
VR 710	1411	710	500	751	21.5
VR 800	1412	800	420	837	31.0
VR 900	1311	900	420	934	34.0
VR 1000	1312	1000	420	1043	37.6

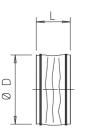

Counterflange FR / flat flange FF Angled flange ring / flat flange ring made from galvanised sheet steel. Dimensions / holes according to DIN 24155 Pt. 2.

Туре	Ref. no.	Туре	Ref. no.	ØLK		Ød	Ødi.L.	Weight in kg
FR 200	1202	_	—	235	25	209		0.5
FR 225	1201		—	259	30	233		0.5
FR 250	1203	FF 250	4941	286	25	256	256	0.7
FR 280	1214	FF 280	4942	322	30	292	286	0.9
FR 315	1204	FF 315	4943	356	30	326	321	1.0
FR 355	1205	FF 355	4944	395	30	365	361	1.1
FR 400	1206	FF 400	4945	438	30	408	409	1.2
FR 450	1207	FF 450	4946	487	35	457	459	1.3
FR 500	1208	FF 500	4947	541	35	511	509	1.5
FR 560	1209	FF 560	4948	605	35	574	569	2.1
FR 630	1211	FF 630	4949	674	35	642	639	2.3
FR 710	1212	FF 710	4950	751	35	715	719	3.1
FR 800	1198	FF 800	4951	837	35	806	809	3.9
FR 900	1199	FF 900	4952	934	35	903	909	4.4
FR 1000	1210	FF 1000	4953	1043	35	1012	1009	9.5

Flanged flexible connector

STS

Flexible connector to be fitted between fan and ducting to reduce vibration transmission and to correct small site misalignments.



Flexible sleeve consists of a silicon free polymer fabric cloth and has zinc plated metal flanges fitted at both ends (max. + 80 °C). Dimensions to DIN 24155, Pt. 2.

Туре	Ref. no.	Type *	Bestell-Nr.	ØDi.L.	ØLK	Weight in kg
STS 200	1219	—	—	205	235	1.3
STS 225	1218	STS 225 Ex	2500	229	259	1.1
STS 250	1220	STS 250 Ex	2501	252	286	1.3
STS 280	1231	STS 280 Ex	2502	288	322	1.5
STS 315	1221	STS 315 Ex	2503	322	356	1.8
STS 355	1222	STS 355 Ex	2504	361	395	2.3
STS 400	1223	STS 400 Ex	2505	404	438	2.5
STS 450	1224	STS 450 Ex	2506	453	487	3.8
STS 500	1225	STS 500 Ex	2507	507	541	3.4
STS 560	1226	STS 560 Ex	2508	570	605	4.5
STS 630	1228	STS 630 Ex	2509	638	674	4.6
STS 710	1229	STS 710 Ex	2510	711	751	7.0
STS 800	1233	STS 800 Ex	2511	801	837	7.5
STS 900	1234	STS 900 Ex	2512	898	934	7.5
STS 1000	1235	STS 1000 Ex	2513	1004	1043	15.0

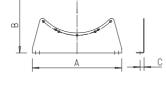
* for explosion-proof fans

Dim. in mm

Flexible sleeve

Flexible connector incl. 2 worm drive clips to be fitted between fan and ducting to reduce vibration transmission and to correct small misalignments. Flexible sleeve made from silicon-free PVC fabric (max. temp. + 80 °C). Dimensions to DIN 24155, Pt. 2.

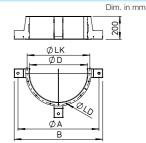
Туре	Ref. no.	Type *	Ref. no.	ØD	L	Weight in kg
FM 200	1670	FM 200 Ex	1686	213	145	0.2
FM 225	1671	FM 225 Ex	1687	235	145	0.2
FM 250	1672	FM 250 Ex	1688	260	145	0.2
FM 280	1673	FM 280 Ex	1689	296	145	0.2
FM 315	1674	FM 315 Ex	1690	330	145	0.2
FM 355	1675	FM 355 Ex	1691	369	145	0.3
FM 400	1676	FM 400 Ex	1692	412	145	0.3
FM 450	1677	FM 450 Ex	1693	461	145	0.3
FM 500	1678	FM 500 Ex	1694	515	145	0.4
FM 560	1679	FM 560 Ex	1695	577	145	0.4
FM 630	1680	FM 630 Ex	1696	646	145	0.4
FM 710	1666	—	—	720	145	0.5


* for explosion-proof fans

Mounting feet

To fix fan flange casing to ceilings, walls or floors. Made from hotdipped galvanised steel. Fixing holes fit casing flanges. Set includes a pair of feet, nuts and bolts.

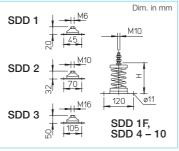
Dim. in mm


Note:

If motors of high weight are installed, an extension duct (VR) is recommended to move the centre of gravity within the mounting feet. Mount feet on the outer flange.

Mounting ring MRV

The mounting ring MRV is provided for the vertical mounting of fans (e.g. Helios types AVD, AMD, VAR etc.). Four mounting brackets for


direct mounting or anti-vibration dampers (SDZ or SDD) ensure the secure vertical mounting of fans. Made from galvanised sheet steel.

Туре	Ref. no.	А	В	С	Weight in kg
MK 200-225	1446	310	208/220	20	1.5
MK 250-280	1447	340	227/245	20	1.7
MK 315-355	1448	380	281/300	25	2.2
MK 400-450	1449	360	311/335	25	2.6
MK 500-560	1450	570	383/415	25	5.3
MK 630	1333	600	465	30	8.5
MK 710	1372	670	515	35	10.5
MK 800	1373	680	565	35	15.5
MK 900	1374	760	625	35	18.0
MK 1000	1375	840	690	35	19.5

Туре	Ref. no.	ØA	В	ØD	ØLK	ØLD	Weight	Max. load capacity
MRV 315	1755	510	576	315	356	9,5 (8x)	6.5 kg	280 kg
MRV 355	1759	550	618	355	395	9,5 (8x)	6.9 kg	280 kg
MRV 400	1760	595	662	400	438	9,5 (12x)	7.4 kg	280 kg
MRV 450	1761	650	714	450	487	9,5 (12x)	7.9 kg	280 kg
MRV 500	1740	700	765	500	541	9,5 (12x)	8.3 kg	280 kg
MRV 560	1741	770	827	560	605	11,5 (16x)	12.9 kg	390 kg
MRV 630	1742	840	898	630	674	11,5 (16x)	13.9 kg	390 kg
MRV 710	1743	920	980	710	751	11,5 (16x)	15.7 kg	390 kg
MRV 800	1744	1030	1101	800	837	11,5 (24x)	24.8 kg	1050 kg
MRV 900	1745	1130	1201	900	934	11,5 (24x)	27.0 kg	1050 kg
MRV 1000	1749	1230	1301	1000	1043	11,5 (24x)	29.1 kg	1050 kg

SDD

Anti vibration mounts for compression

To reduce noise and vibration transmission of fans installed on horizontal surfaces.

Simple installation in combination with feet MK (accessory). Select size according to fan weight see table).

Rubber elements are suitable for small to middle weights and ambient temperatures up to + 60 °C. Spring elements are suitable for higher temperatures above + 60 °C (e.g. smoke extraction).

SDZ			58 .	Dim. in mm
SDZ 1 – 2	E S	SDZ 1		
SDZ 3 (no Fig., with square four-point	fastening)	SDZ 2		
SDZ 1F, 4 – 9		SDZ 3		₩I SDZ 1F SDZ 4 – 9

Anti vibration mounts for suspension

To reduce noise and vibration transmission of fans installed hanging from ceilings. Specification as model SDD.

max, fan weight

Important note for installation of anti vibration mounts! Make sure that fan system is well

balanced (centre of gravity of heavy motor may cause uneven loading of mounts).

Туре	Ref. no.	max. fan weight kg	H Height in mm	Spring element	Contents 1 set = 4 pieces
SDD 1	1452	80	*		
SDD 1F	1942	70	112 – 82	•	
SDD 2	1453	180	*		
SDD 3	1367	750	*		
SDD 4	1944	130	112 - 86	•	
SDD 5	1924	210	112 - 86	•	
SDD 6	1926	400	112 - 80	•	
SDD 7	1928	580	112 – 82	•	
SDD 8	1930	900	112 – 82	•	
SDD 9	1934	1300	112 – 85	•	
SDD 10	1951	1800	112 – 88	•	

Contents 1 set = 4 pieces H Height in mm Spring element Ref. no Туре kg SDZ 1 1454 * 60 SDZ 1F 1943 190 - 220 70 SDZ 2 1455 160 + SDZ 3 300 1366 SDZ 4 1945 130 190 - 216 SDZ 5 210 1925 190 - 216SDZ 6 1927 400 190 - 221 SDZ 7 1929 580 190 - 220SDZ 8 1931 900 190 - 220SDZ 9 1935 1300 190 - 217

* specified in dimensional drawing

* specified in dimensional drawing